Entrar/Registro  
INICIO ENGLISH
 
Gaceta Médica de México
   
MENÚ

Contenido por año, Vol. y Num.

Índice de este artículo

Información General

Instrucciones para Autores

Mensajes al Editor

Directorio






>Revistas >Gaceta Médica de México >Año 2010, No. 3


Valdespino-Gómez VM, Valdespino-Castillo VE
Alteraciones celulares y moleculares no clásicas en el desarrollo del cáncer
Gac Med Mex 2010; 146 (3)

Idioma: Español
Referencias bibliográficas: 79
Paginas: 185-198
Archivo PDF: 121.17 Kb.


Texto completo




RESUMEN

Se requieren numerosas alteraciones genéticas y epigenéticas para producir la transformación maligna de las células normales. Estas alteraciones participan en las vías moleculares intracelulares oncogénicas que permiten la proliferación y la diseminación de las células tumorales. Hanahan y Weinberg, en su artículo The hallmarks of cancer, puntualizaron las principales características celulares adquiridas en el desarrollo y progresión del cáncer: autosuficiencia de los señalamientos moleculares que inducen crecimiento, insensibilidad a los señalamientos de anticrecimiento, evasión de la apoptosis, potencial ilimitado de la replicación celular, angiogénesis aumentada, e invasión tisular y desarrollo de metástasis. Esta revisión examina otras características biológicas importantes estudiadas en años recientes, entre algunas de las más importantes biomarcas no clásicas del cáncer destacan la inestabilidad genómica, la evasión de la senescencia celular, las alteraciones epigenéticas que modifican los genes relacionados con el cáncer, las alteraciones de la expresión génica por interferencia del mRNA, las alteraciones en el metabolismo intermedio de la glucosa y la glutamina, la participación de las stem cells cancerosas en el mantenimiento de la proliferación celular, la participación de las células estromales en el microambiente tumoral, y las alteraciones en la presentación antigénica celular junto con la inmunosupresión por citocinas en el microambiente tumoral. La identificación de las biomarcas moleculares clásicas y no clásicas del proceso tumoral en un tumor específico, permitirá el mejor entendimiento de su fisiopatología y el diseño de estrategias terapéuticas dirigidas personalizadas.


Palabras clave: Cáncer, biomarcas no clásicas, fenotipo celular tumoral.


REFERENCIAS

  1. Hanahan D, Weinberg R. The hallmarks of cancer. Cell 2000;100:57-70.

  2. Zhou Y, Barlogie B, Shaughnnessy JD. The molecular characterization and clinical management of multiple myeloma in the post-genome era. Leukemia 2009;23:1941-1956.

  3. Cooper CS, Campbell C, Jhavar S. Mechanisms of disease: biomarkers and molecular target from microarray gene expression studies in prostate cancer. Nat Clin Pract Urol 2007;4:677-687.

  4. Hardy J, Singleton A. Genomewide association studies and human disease. N Engl J Med 2009;360:1759-1768.

  5. Herrick J, Bensimon A. Introduction to molecular combining: genomics, DNA replication and cancer. Methods Mol Biol 2009;521:71-101.

  6. Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 2009;361:1058-1066.

  7. Toguchida J, Nakayama T. Molecular genetics of sarcomas: applications to diagnosis and therapy. Cancer Sci 2009;100:1573-1580.

  8. Thornton-Wells TA, Moore JH, Haines JL. Genetics, statistics and human disease: analytical retooling for complexity. Trends Genet 2004;20:640-647.

  9. Balmain A, Gray J, Ponder B. The genetics and genomics of cancer. Nat Genet 2003;33 Suppl:238-244.

  10. Kraft P, Hunter DJ. Genetic risk prediction-are we there yet? N Engl J Med 2009;360:1701-1703.

  11. Nagarajan RP, Costello JF. Molecular epigenetics and genetics in neurooncology. Neurotherapeutics 2009;6:436-446.

  12. Kinzler KW, Vogelstein B. Gatekeepers and caretakers. Nature 1997;386:761-763.

  13. Michor F, Iwasa Y, Nowak M. Dynamics of cancer progression. Nat Rev Cancer 2004;4:197-205.

  14. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 2009;9:153-166.

  15. Hoeijmakers JHJ. DNA damage, aging, and cancer. N Engl J Med 2009;361:1475-1485.

  16. Reed SI. Cell cycle. En: DeVita VT, Lawrence TS, Rosenberg SA, editors. Cancer, Principles & Practice of Oncology. 8th Edition. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins; 2008. pp. 79-92.

  17. Wang G, Zhao J, Vasquez KM. Methods to determine DNA structural alterations and genetic instability. Methods 2009;48:54-62.

  18. Hanawalt PC, Spivak G. Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol 2008;9:958-70.

  19. Yan Q, Wajapeyee N. Exploiting cellular senescence to treat cancer and circumvent drug resistance. Cancer Biol Ther 2010;9:166-175.

  20. von Figura G, Rudolph KL. Cancer and aging-biological mechanisms. Onkologie 2009;32 Suppl3:34-38.

  21. Wong KK, Sharples NE, DePinho RA. Telomeres, Telomerase and cell immortalization. En: DeVita VT, Lawrence TS, Rosenberg SA, editors. CANCER, Principles & Practice of Oncology. 8th Edition. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins; 2008. pp. 53-66.

  22. Zuckerman V, Wolyniec K, Sionov RV, Haupt S, Haupt Y. Tumour suppression by p53: the importance of apoptosis and cellular senescence. J Pathol 2009;219:3-15.

  23. Artandi SE, DePinho RA. Telomeres and telomerase in cancer. Carcinogenesis 2010;31:9-18.

  24. Downing JR. Cancer genomes-continuing progress. N Engl J Med 2009;361:1111-1112.

  25. Sadikovic B, Al-Romaih K, Squire JA, Zielenska M. Cause and consequences of genetic and epigenetic alterations in human cancer. Current Genomics 2008;9:394-408.

  26. McKenna ES, Roberts CWM. Epigenetics and cancer without genomic instability. Cell Cycle 2009;8:23-26.

  27. Siddiqi S, Mills J, Matushansky I. Epigenetic remodeling of chromatin architecture: exploring tumor differentiation therapies in mesenchymal stem cells and sarcomas. Curr Stem Cell Res Ther 2009 (Epub ahead of print)

  28. Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis 2009;31:27-36.

  29. Valdespino VG, Valdespino PC. Mecanismos epigenéticos celulares y sus alteraciones en cáncer. GAMO 2008;7:80-92.

  30. Cheung HH, Lee TL, Rennert OM, Chang WY. DNA methylation of cancer genome.Birth Defects Res C Embryo Today 2009;87:335-350.

  31. Franco R, Schoneveld O, Georgakilas AG, Panayiotidis MI. Oxidative stress, DNA methylation and carcinogenesis. Cancer Lett 2008;266:6-11.

  32. Choi SH, Worswick S, Byun HM, Shear T, Soussa JC, Wolff EM, et al. Changes in DNA methylation of tandem DNA repeats are different from interspersed repeats in cancer. Int J Cancer 2009;125:723-729.

  33. Shen Y, Fouse SD, Fan G. Genome-wide DNA methylation profiling: the mDIP-chip technology. Methods Mol Biol 2009;568:203-216.

  34. Tang R, Changchien CR, Wu MC, Fan CW, Liu KW, Chen JS, et al. Colorectal cancer without high microsatellite instability and chromosomal instability—an alternative genetic pathway to human colorectal cancer. Carcinogenesis 2004;25:841-846.

  35. Yang N, Coukos G, Zhang L. MicroRNA epigenetic alterations in human cancer: one step forward in diagnosis and treatment. Int J Cancer 2008;122: 963-968.

  36. Fire A, Xu S, Montgomery M, Kostas S, Driver S, Mello S. Potent and specific genetic interference by double-stranded in Caenorhabditis elegans. Nature 1998;391:806-811.

  37. Dávalos V, Esteller M. MicroRNAs and cancer epigenetics: a macrorevolution. Curr Opin Oncol 2009;22:35-45.

  38. Garzon R, Calin GA, Croce M. MicroRNAs in cancer. Annu Rev Med 2009;60:167-179.

  39. Yendamuri S, Calin GA. The role of microRNA in human leukemia: a review. Leukemia 2009;23:1257-1263.

  40. Mullenders J, Bernards R. Loss-of-function genetic screens as a tool to improve the diagnosis and treatment of cancer. Oncogene 2009;28:4409-4420.

  41. Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Atteq B, et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 2008;322:1695-1699.

  42. Hime GR, Somers WG. Micro-RNA mediated regulation of proliferation, self renewal and differentiation of mammalian stem cells. Cell Adh Migr 2009;3: 425-432.

  43. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 2004;101:2999-3004.

  44. Aqueilan RI, Calin GA, Croce CM. miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ 2010;17:215-220.

  45. Hermeking H. The miR-34 family in cancer and apoptosis. Cell Death Differ 2010;17:193-199.

  46. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005;65:7065-7070.

  47. Barbie D, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 2009;462:108-114.

  48. Vander HMG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009;324:1029-1033.

  49. Rathmell JC, Newgard CB. A glucose-to-gene-link. Science 2009;324:1021- 1022.

  50. Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 2009;324:1076-1080.

  51. Rohren EM, Turkington TG, Coleman RE. Clinical applications of PET in oncology. Radiology 2004;231:305-332.

  52. DeBerardinis RJ, Cheng T. Q°s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 2010;29:313-324.

  53. DeBerardinis RJ. Is cancer a disease of abnormal cellular metabolism?: New angles on an old idea. Genet Med 2008;10:767-777.

  54. Christofk HR, Vander Heiden MG, Harris M, Rammanathan A, Gerzten RE, Wei Ru. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 2008;452:230-234.

  55. Maximo V, Lima J, Soares P, Sobrinho-Simoes M. Mitochondria and cancer. Virchows Arch 2009;454:481-495.

  56. Gottlieb E, Tomlinson IP. Mitochondrial tumor suppressors: a genetic and biochemical update. Nat Rev Cancer 2005;5:857-866.

  57. Diaz-Ruiz R, Uribe-Carvajal S, Devin A, Rigoulet M. Tumor cell energy metabolism and its common features with yeast metabolism. Biochim Biophys Acta 2009;1796:252-265.

  58. Spratlin JL, Serkova N, Eckhardt SG. Clinic applications of metabolomics in Oncology: a review. Clin Cancer Res 2009;15:431-440.

  59. Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 2007;11:37-51.

  60. Maenhaut C, Dumont JE, Roger P, van Staveren WC. Cancer stem cells: areality, a myth, a fuzzy concept or a misnomer? An analysis. Carcinogenesis 2009;31:149-158.

  61. Schatton T, Frank NY, Frank MH. Identification and targeting of cancer stem cells. Biossays 2009:31:1038-1049.

  62. Frank NY, Schatton T, Frank MH. The therapeutic promise of the cancer stem cell concept. J Clin Invest 2010;120:41-50.

  63. Rosen JM, Jordan CT. The increasing complexity of the cancer stem cell paradigm. Science 2009;324:1670-1673.

  64. Yao Z, Mishra L. Cancer stem cells and hepatocellular carcinoma. Cancer BiolTher 2009;8:1691-1698.

  65. Eng C, Leone G, Orloff MS, Ostrowski MC. Genomic alterations in tumor stroma. Cancer Res 2009;69:6759-6764.

  66. Colotta F, Allavena P, Sica A, Garianda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancers: links to genetic instability. Carcinogenesis 2009; 30:1073-1081.

  67. Stappenbeck TS, Miyoshi H. The role of stromal stem cells in tissue regeneration and wound repair. Science 2009;324:1666-1669.

  68. Polyak K, Haviv I, Campbell IG. Co-evolution of tumor cells and their microenvironment. Trends Genet 2009;25:30-38.

  69. Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer 2009;9:239-252.

  70. Hu M, Polyak K. Microenvironmental regulation of cancer development. Curr Opin genet Dev 2008;18:27-34.

  71. Kitamura T, Kometani K, Hashida H, Matsunaga A, Mihoshi H, Hosogi H, et al. SMAD4-deficient intestinal tumors recruit CCR1+ myeloid that promote invasion. Nature Genet 2007;39:467-475.

  72. Gocheva V, Wang HW, Gadea BB, Shree T, Hunter KE, Garfall AL, et al. IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev 2010;24:241-255.

  73. Gunnarsson R, Isaksson A, Mansouri M, Goransson H, Jansson M, Cahill N, et al. Identification of native, immunogenic peptides from cyclin D1. Leukemia 2010;24:209-211.

  74. Loose D, Van de Wiele C. The immune system and cancer. Cancer Biother Radiopharm 2009;24:369-376.

  75. Galon J, Costes A, Sanchez-Cabo F, Kirivosky A, Mlecnik B, Lagorce- Pages C, et al. Type, density and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006;313:1960-1964.

  76. Lee HE, Chae SW, Lee YL, Kim MA, Lee HS, Lee BL, Kim WH. Prognostic implications of type and density of tumour-infiltrating lymphocytes in gastric cancer. BJC 2008;99:1704-1711.

  77. Bellati, Visconti V, Napoletano C, Antonilli M, Frati L, Panici PB, Nuti M. Immunology of gynecologic neoplasms: analysis of the prognostic significance of the immune status. Curr Cancer Drug Targets 2009;9:541-565.

  78. Disis ML, Bernhard H, Jaffee EM. Use of tumour-responsive T cells as cancer treatment. Lancet 2009;373:673-683.

  79. Jian B, Yang I, Parsa AT. Monitoring immune response after glioma vaccine immunotherapy. Neurosurg Clin N Am 2010;21:195-199.



>Revistas >Gaceta Médica de México >Año2010, No. 3
 

· Indice de Publicaciones 
· ligas de Interes 






       
Derechos Resevados 2019