Entrar/Registro  
INICIO ENGLISH
 
Gaceta Médica de México
   
MENÚ

Contenido por año, Vol. y Num.

Índice de este artículo

Información General

Instrucciones para Autores

Mensajes al Editor

Directorio






>Revistas >Gaceta Médica de México >Año 2010, No. 3


Salazar MI, López-Ortega O, León-Ávila G, Ramírez-Gónzalezc JE, Castro-Mussot ME
El origen de la variabilidad genética de los virus de la influenza
Gac Med Mex 2010; 146 (3)

Idioma: Español
Referencias bibliográficas: 66
Paginas: 199-206
Archivo PDF: 135.86 Kb.


Texto completo




RESUMEN

Para comprender la gran variabilidad de los virus de la influenza es necesario entender no solo su configuración genética, sino las consecuencias a la que ésta conlleva en términos de la variación que provoca en las proteínas que participan en su replicación y las que constituyen la superficie de la partícula viral. El origen de los grandes cambios en estos virus se debe, en primer lugar, a su genoma segmentado que puede sufrir reasociaciones y, en segundo, a la tasa de error de la polimerasa, responsable de copiar los genes contenidos en estos segmentos. Estos dos mecanismos combinados confieren la plasticidad genética que origina con cierta frecuencia la emergencia de nuevos virus de la influenza en la naturaleza.


Palabras clave: Virus de la influenza, variabilidad genética, genoma segmentado, error de la polimerasa.


REFERENCIAS

  1. Strauss J, Strauss E. Viruses and human disease. Second edition. San Diego, CA: Elsevier; 2008.

  2. Compans RW, Chopin PW. Reproduction of mixoviruses. En: Franenkel- Conrat H, Wagner RR, editors. Comprehensive virology. Vol. 4. New York, USA: Plenum Press; 1975. pp. 179-252.

  3. Lamb RA, Krug RM. Orthomyxoviridae: the viruses and their replication. En: Knipe DM, Howley PM, editors. Fundamental virology. Fourth edition. Philadelphia, USA: Lippincott Williams & Wilkins; 2001. pp. 725-769.

  4. Betakova T, Nermut MV, Hay AJ. The NB protein is an integral component of the membrane of influenza B virus. J Gen Virol 1996;77:2689-2694.

  5. Brassard DL, Lesser GP, Lamb RA. Influenza B virus NB glycoprotein is a component of virions. Virology 1996;220:350-360.

  6. Tada Y, Hongo S, Muraki Y, Matsuzaki Y, Sugawara K, Kitame F, et al. Phosphorylation in influenza C virus CM2 protein. Virus Res 1998;58:65-72.

  7. White D, Fenner F. Medical virology. Fourth edition. USA: Academic Press; 1994.

  8. Duesberg P. Distinct subunits of the ribonucleoprotein of influenza virus. J Mol Biol 1969;42:485-499.

  9. Webster R, Bean W, Gorman O, Chambers T, Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol Rev 1992;56:152-179.

  10. Murphy B, Webster R. Orthomyxovirus. En: Fields B, Knipe D, Howley P, editors. Virology. Second edition. New York, USA: Lippincott-Raven Publishers; 1996. pp. 1397-1445.

  11. Kuiken T, Holmes E, McCauley J, Rimmelzwaan G, Williams C, Grenfell B. Host species barriers to influenza virus infections. Science 2006;312:4-13.

  12. Lamb R, Takeda M. Death by influenza virus protein. Nat Med 2001;7:1286- 1288.

  13. Cheung T, Guan Y, Ng S, Chen H, Wong C, Peiris J, et al. Generation of recombinant influenza A virus without M2 ion-channel protein by introduction of a point mutation at the 5' end of the viral intron. J Virol 2005;75:4439-4443.

  14. Inglis S, Brown C. Spliced and unspliced RNAs encoded by virion RNA segment 7 of influenza virus. Nucleic Acids 1981;9:2727-2740.

  15. Shih S, Nemeroff M, Krug R. The choice of alternative 5' splice sites in influenza virus M1 mRNA is regulated by the viral polymerase complex. Proc Natl Acad Sci USA 1995;92:6324-6328.

  16. Inglis SC, Lamb RA, Carroll AR, Mahy BWJ. Polypeptides specified by the influenza virus genome. I. Evidence for eight distinct gene products specified by fowl plague virus. Virology 1976;74:489-503.

  17. Lamb RA, Choppin PW. Synthesis of influenza virus proteins in infected cells: translation of viral polypeptides including three P polypeptides from RNA produced by primary transcription. Virology 1976;74:504-519.

  18. Li M, Ramírez B, Krug R. RNA-dependent activation of primer RNA production by influenza virus polymerase: different regions of the same protein subunit constitute the two required RNA binding sites. EMBO J 1998;19:5844-5852.

  19. Smith FL, Palese P. Variation in influenzavirus genes: epidemiology, pathogenic, and evolutionary consequences. En: Krug RM, editor. The influenza viruses. New York, USA: Plenum; 1989. pp. 152-200.

  20. Luoh S, Mcgregor M, Hinshaw V. Hemagglutinin mutations related to antigenic variation in H1 swine influenza viruses. J Virol 1992;166:1066-1073.

  21. Both G, Sleigh M, Cox N, Kendal P. Antigenic drift in influenza virus H3 hemagglutinin from 1968 to 1980: multiple evolutionary pathways and sequential amino acid changes at key antigenic sites. J Virol 1983;48:52-60.

  22. O’Brian R, Noble G, Easterday B, Kendal P, Nelson D, Hattwick M, et al. Swine-like influenza virus infection in a Wisconsin farm family. J Infect Dis 1997;136(Suppl):390-396.

  23. Thacker E, Janke B. Swine influenza virus:zoonotic potential and vaccination strategies for the control of avian and swine influenzas. J Infect Dis 2008;197:19- 24.

  24. Brown I, Harris P, McCauley J, Alexander D. Multiple genetic reassortment of avian and human influenza A viruses in european pigs, resulting in the emergence of an H1N2 virus of novel genotype. J Gen Virol 1998; 79:2947-2955.

  25. Castrucci M, Donatelli I, Sidoli L, Barigazzi G, Kawaoka Y, Webster R. Genetic reassortment between avian and human influenza A viruses in Italian pigs. Virology 1993;193:503-506.

  26. Scholtissek C, Burger H, Kistner O, Shortridge K. The nucleoprotein as a possible major factor in determining host specificity of influenza H3N2 viruses. Virology 1985;147:287-294.

  27. Peiris J, Guan Y, Markwell D, Ghose P, Webster R, Shortridge K. Cocirculationof avian H9N2 and contemporary ‘human’ H3N2 influenza A viruses in pigs in southeastern China: potential for genetic reassortment? J Virol 2001;75:9679-9686.

  28. Webster RG, Laver WG, Air GM, Schild GC. Molecular mechanisms of variation in influenza viruses. Nature 1982;296:115-121.

  29. Rabadan R, Levine A, Krasnitz M. Non random reassortment in human A influenza viruses. Influenza Other Respiratory Viruses 2008;2:9-22.

  30. Weiss W, Brown JH, Cusack S. Structure of the influenza virus hemagglutinin complexed with its receptor, syalic acid. Nature 1988;333:426-431.

  31. Yamada S, Suzuki Y, Suzuki T, Le M, Nidom C, Sakai-Tagawa Y, et al. Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature 2006;444:378-382.

  32. Munster VJ, Baas C, Lexmond P, Waldenstro J, Wallensten A, Fransson T, et al. Spatial, temporal, and species variation in prevalence of influenza A viruses in wild migratory birds. PLoS Path 2007;3:630-638.

  33. Suzuki Y, Ito T, Suzuki T, Holland RE, Chambers TM, Kiso M, et al. Sialicacid species as a determinant of the host range of influenza A viruses. J Virol 2000;74:11825-11831.

  34. Yeun K, Wong S. Human infection by avian influenza A H5N1. Hong Kong Med J 2005;11:189-199.

  35. Suzuki Y, Nei M. Origin and evolution of influenza virus hemagglutinin genes. Mol Biol Evol 2002;19:501-509.

  36. Beare AS, Webster RG. Replication of avian influenza viruses in humans. Arch Virol 1991;119:37-42.

  37. Vines A., Wells K, Mastrosovch M, Castrucci MR, Ito T, Kawaoka Y. The role of influenza A virus hemagglutinin residues 226 and 228 in receptor specificity and host range restriction. J Virol 1998;92:7626-7631.

  38. Neumman G, Kawaoka Y. Host range restriction and pathogenicity in the context of influenza pandemic. Emerg Infect Dis 2006;12:881-886.

  39. Subbarao EK, London W, Murphy BR. A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J Virol 1993;67:1761-1764.

  40. Ma W, Brenner D, Wang Z, Dauber B, Ehrhardt C, Högner K, et al. The NS segment of an H5N1 highly pathogenic avian influenza virus (HPAIV) is sufficient to alter replication efficiency, cell tropism, and host range of an H7N1 HPAIV. J Virol 2010;84:2122-2133.

  41. Allen J, Gardner S, Vitalis E, Slezak T. Conserved amino acid markers from past influenza pandemic strains. BMC Microbiology 2009;9:1-10.

  42. Deyde VM, Sheu TG, Trujillo AA, Okomo-Adhiambo M, Garten R, Alexander I, et al. Detection of molecular markers of drug resistance in 2009 pandemic influenza A (H1N1) viruses by pyrosequencing. Antimicrob Agents Chemother 2010;54:1102-1110.

  43. Bauer CM, Pinto LH, Cross TA, Lamb RA. The influenza virus M2 ion channel protein: probing the structure of the transmembrane domain in intact cells by using engineered disulfide crosslinking, Virology 1999;254:196-209.

  44. Pielak R, Schnell J, Chou J. Mechanism of drug inhibition and drug resistance of influenza A M2 channel Proc Natl Acad Sci USA 2009;106:7379-7384.

  45. Bright RA, Medina MJ, Xu X, Perez-Oronoz G, Wallis TR, Davis XM, et al. Incidence of adamantane resistance among influenza A (H3N2) viruses isolated worldwide from 1994 to 2005: a cause for concern. Lancet 2005;366:1175-1181.

  46. Bright RA, Shay DK, Shu B, Cox NJ, Klimov AI. Adamantane resistance among influenza A viruses isolated early during the 2005-2006 influenza season in the United States. JAMA 2006;295:891-894.

  47. Deyde VM, Xu X, Bright RA, Shaw M, Smith CB, Zhang Y, et al. Surveillance of resistance to adamantanes among influenza A(H3N2) and A(H1N1) virusesisolated worldwide. J Infect Dis 2007;196:249-257.

  48. Staschke KA, Colacino JM, Baxter AJ, Air GM, Bansal A, Hornback WJ, et al. Molecular basis for the resistance of influenza viruses to 4-guanidino- Neu5Ac2en. Virology 1995;214:642-646.

  49. Blick TJ, Sahasrabudhe A, McDonald M, Owens IJ, Morley PJ, Fenton RJ, et al. The interaction of neuraminidase and hemagglutinin mutations ininfluenza virus in resistance to 4-guanidino-Neu5Ac2en. Virology 1998;246:95- 103.

  50. Sheu TG, Deyde VM, Okomo-Adhiambo M, Garten RJ, Xu X, Bright RA, et al. Surveillance for neuraminidase inhibitor resistance among human influenza A and B viruses circulating worldwide from 2004 to 2008. Antimicrob Agents Chemother 2008;52:3284-3292.

  51. Baum EZ, Wagaman PC, Ly L, Turchi I, Le J, Bucher D, et al. A point mutation in influenza B neuraminidase confers resistance to peramivir and loss of slow binding. Antiviral Res 2003;59:13-22.

  52. Dharan NJ, Gubareva LV, Meyer JJ, Okomo-Adhiambo M, McClinton RC, Marshall SA, et al. Oseltamivir-resistance working group. Infections with oseltamivir-resistant influenza A(H1N1) virus in the United States. JAMA 2009;301:1034-1041.

  53. Ha Y, Stevens DJ, Skehel JJ, Wiley DC. H5 avian and H9 swine influenza virus haemagglutinin structures: possible origin of influenza subtypes. EMBO J 2002;21:865-875.

  54. Kolata G. Flu: The history of the great influenza pandemic of 1918 and the search for the virus that caused it. New York, USA: Simon & Schuster; 2001.

  55. Tumpey TM, Basler CF, Aguilar PV, Zeng H, Solórzano A, Swayne DE, et al. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 2005;310:77-80.

  56. García-Sastre A, Whitley RJ. Lessons leRNAed from reconstructing the 1918 influenza pandemic. J Infect Dis 2006;194(Suppl 2):S127-S132.

  57. Daum LT, Canas LC, Klimov AI, Shaw MW, Gibbons RV, Shrestha SK, et al. Molecular analysis of isolates from influenza B outbreaks in the U.S. and Nepal, 2005. Arch Virol 2006;151:1863-1874.

  58. Hatta M, Hatta Y, Kim J, Watanabe S, Shinya K, Nguye N, et al. Growth of H5N1 influenza A viruses in the upper respiratory tracts of mice. PLoS Pathog 2007;3:1374-1379.

  59. Shinya K, Ebina M, Yamada S, Ono M, Kasai N, Kawaoka Y. Avian flu: influenza virus receptors in the human airway. Nature 2006;440:435-436.

  60. Wong S, Yuen K. Avian influenza virus infections in humans. Chest 2006;129:156-168.

  61. Auewarakul P, Suptawiwat O, Kongchanagul A, Sangma C, Suzuki Y, Ungchusak K, et al. An avian influenza H5N1 virus that binds to a human-type receptor. J Virol 2007;81:9950-9955.

  62. Mounts A, Kwong H, Izurieta H, Ho Y, Au T, Lee M, et al. Case control study of risk factors for avian influenza A (H5N1) disease Hong Kong. J Infect Dis 1997;180:505-508.

  63. Secretaría de Salud México. Plan nacional de preparación y respuesta ante una pandemia de influenza. Disponible en http://www.dgepi.salud.gob.mx/ pandemia/ppi.pdf

  64. Bai GR, Chittaganpitch M, Kanai Y, Li YG, Auwanit W, Ikuta K, et al. Amantadine- and oseltamivir-resistant variants of influenza A viruses in Thailand. Biochem Biophys Res Commun 2009;390:897-901.

  65. Balannik V, Wang J, Ohigashi Y, Jing X, Magavern E, Lamb RA, et al. Design and pharmacological characterization of inhibitors of amantadineresistant mutants of the M2 ion channel of influenza A virus. Biochemistry 2009;48:11872-11882.

  66. Collins PJ, Haire LF, Lin YP, Liu J, Russell RJ, Walker PA, et al. Structural basis for oseltamivir resistance of influenza viruses. Vaccine 2009;27:6317- 23.



>Revistas >Gaceta Médica de México >Año2010, No. 3
 

· Indice de Publicaciones 
· ligas de Interes 






       
Derechos Resevados 2019