medigraphic.com
ENGLISH

Revista Biomédica

Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2012, Número 1

<< Anterior

Rev Biomed 2012; 23 (1)


Hemoglobina Raleigh en Costa Rica detectada como un valor falsamente elevado de Hemoglobina glicosilada

Rodríguez-Romero WE, Villalobos-Fernández J, Salas-Abarca P, Hong-yuan L, Chui DHK
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 113
Paginas: 33-38
Archivo PDF: 172.76 Kb.


PALABRAS CLAVE

hemoglobina Raleigh, hemoglobina glicosilada, hemoglobinas anormales, HbA1c.

RESUMEN

Introducción. Las hemoglobinas anormales forman parte de los trastornos hereditarios de la hemoglobina (Hb) y, por su frecuencia, son considerados en muchas regiones del mundo como problemas de Salud Pública. Aunque algunas presentan problemas clínicos, una gran proporción son inocuas y muchas veces su diagnóstico se realiza en forma casual mediante métodos altamente especializados.
El caso de la Hb Raleigh, variante de cadenas beta, ha sido reportada por interferir con la detección de la Hb glicosilada y dar valores falsamente elevados. En este reporte, se publica el hallazgo de la Hb Raleigh en Costa Rica, detectada inicialmente como un valor extremadamente alto de Hb glicosilada.
Caso clínico. Paciente masculino caucásico, sin manifestaciones hematológicas. El sujeto es un diabético conocido, con repetidas determinaciones altas de hemoglobina glicosilada (HbA1c), evaluadas inicialmente con un método de cromatografía de intercambio iónico (Stambio). Se cambió la metodología de la detección de HbA1c para utilizar el equipo de BioRad D-10 HPLC, obteniéndose valores superiores al 30% de Hb glicosilada y se realizaron estudios bioquímicos y genéticos determinándose la presencia de la Hb Raleigh. Esta variante se puede detectar bioquímicamente sólo mediante cromatografía líquida de alta resolución (HPLC) y no por la electroforesis de hemoglobina.
Discusión. La Hb Raleigh es una variante poco frecuente de cadenas ß, con una mutación en el primer codón y un cambio a nivel de aminoácidos de Vall.Ac-Ala. Este caso es reportado inicialmente como un valor muy alto de HbA1c y, finalmente, identificada como Hb Raleigh. Este hallazgo es importante por la interferencia con la determinación de Hb glicosilada y llama la atención a que los laboratorios clínicos dispongan de una metodología alterna al HPLC para confirmar valores extremadamente elevados de Hb glicosilada.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Sáenz GF, Rodríguez WE. Las Hemoglobinas Anormales.

  2. En: Sáenz GF, Rodríguez WE, Jiménez R, Salazar

  3. L, Valverde B, editores. Hematología Analítica. 5ª

  4. ed. San José: EDNASSS; 2008. p 195-3.

  5. Stuart MJ, Nagel RL. Sickle cell disease. Lancet

  6. 2004; 364: 1343-360.

  7. Sáenz GF, Granado A, Valverde K. Hemoglobinopatía

  8. Clínica. En: Sáenz GF, Rodríguez WE, Jiménez

  9. R, Salazar L, Valverde B, editores. Hematología

  10. Analítica. 5ª ed. San José: EDNASSS; 2008. p 205-19.

  11. Sáenz GF, Rodríguez WE, Chaves MA, Variantes

  12. estructurales de la Hemoglobina en Iberoamérica. Rev

  13. Biol Trop 1993; 41: 393-8

  14. Patrinos, G.P., B. Giardine, C. Riemer, W. Miller,

  15. D.H.K. Chui, N.P. Anagnou et al. Improvements in

  16. the HbVar database of human hemoglobin variants and

  17. thalassemia mutations for population and sequence

  18. variation studies. Nucl Acids Res. 32; 537-41. URL:

  19. http://globin.cse.psu.edu/hbvar/menu.html

  20. Thomas LB, Agosti SJ, Man MA, Mastorides SM.

  21. Screening for hemoglobinopathies during routine

  22. hemoglobin A1c testing using the Tosoh G7 Glycohemoglobin

  23. Analyzer. Ann Clin Lab Sci 2007; 3:251-5.

  24. Kutlar A, Huisman THJ. The detection of Hemoglobinopathies;

  25. techniques and diagnostic. Human

  26. Biochemical Genetics: A Laboratory Manual. New

  27. York: J. Wiley and Sons; 1991.

  28. Sáenz GF, Rodríguez WE. Estudios de la hemoglobina

  29. por electroforesis y HPLC. En: Sáenz GF,

  30. Rodríguez WE, Jiménez R, Salazar L, Valverde

  31. B, editores. Hematología Analítica. 5ª ed. San José:

  32. EDNASSS; 2008. p 649-61.

  33. Moo-Penn WF, Bechtel KC, Schmidt RM, Johnson

  34. MH, Jue DL, Schmidt DE Jr et al. Hemoglobin

  35. Raleigh (beta1 valine replaced by acetylalanine).

  36. Structural and functional characterization. Biochemistry

  37. 1977; 22: 4872-9.

  38. Landin B, Jeppsson JO. Rare beta chain hemoglobin

  39. variants found in Swedish patients during HBA1c

  40. analysis. Hemoglobin 1993; 4: 303-18.

  41. Behan KJ, Storey NM, Lee HK. Reporting variant he-

  42. moglobins discovered during hemoglobin A1c analysis.

  43. Clin Chim Acta 2009; 406: 124-30.

  44. Aldasouqi S, Solomon D, Bokhari S, Khan P,

  45. Muneera S, Gossain V. Glycohemoglobin A1c; a

  46. promising screening tool in gestational diabetes mellitus.

  47. Int J Diabetes Dev Ctries 2008; 28: 121-4.

  48. Hertel JK, Johansson S, Raeder H, Platou CG,

  49. Midthjell K, , Molven A, et al. Evaluation of four novel

  50. genetic variants affecting hemoglobin A1c levels in a

  51. population based type 2 diabetes cohort. BMC Med

  52. Genet 2011; 12: 20-5.

  53. Rai DK, Landin B, Griffi ths WJ, Alvelius G. Identification

  54. of N-terminal acetylation in Hb Raleigh

  55. (beta1Val-->Ac-Ala) by electrospray tandem mass

  56. spectrometry. Rapid Commun Mass Spectrom 2002;

  57. 18: 1793-6.

  58. Castelly, R, Tempesta, A, Bianchi, A., Porro, T, Ivaldi,

  59. G., Capellini, MD. Unreliable estimation of HbAic

  60. due to the presence of Camperdown haemoglobin (beta

  61. 104 (G6) Arg-Ser). Diabet Med 2004; 21: 377-9.

  62. King, ME, Rifai, N, Malekpour, A. Hemoglobin Hope

  63. interferes with measurement of glycated hemoglobin

  64. by ion exchange chromatographty and electrophoresis.

  65. Clin Chem 1984; 30: 1106-7.

  66. 38

  67. Rodríguez-Romero et al.

  68. Chen D, Crimmins DL, Hsu FF, Lindberg FP, Scott

  69. MG.. Hemoglobin Raleigh as the cause of a falsely increased

  70. hemoglobin A1C in an automated ion-exchange

  71. HPLC method. Clin Chem 1998; 6: 1296-301.

  72. Flückinger R, Winterhalter, KH. In vitro synthesis of

  73. hemoglobin A1c. FEBS Let 1976; 72: 356-60

  74. Bunn HF, Gabbay KM, Gallop PM. The glycosilation

  75. of hemoglobin: relevance to diabetes mellitus. Science

  76. 1978; 200: 21-5

  77. Rahbar, S. Glycosilated hemoglobins. En: Schneider,

  78. RG. University of Texas Medical Branch, Galveston.

  79. Editorial Texas Reports on Biology Medicine; 1981.

  80. Vol 40: 373-96.

  81. Sáenz GF. Las Hemoglobinas Glicosiladas. En: Sáenz

  82. GF, Chaves, MA, Rodríguez WE, Barrantes, A, Orlich,

  83. J. editores. Hematología Analítica. 3a. ed. San José:

  84. EDNASSS; 1995. P.389-97.

  85. John WG, Mosca A, Weykamp C, Goodall I. HbA1c

  86. stadarization: history, science and politics. Clin Biochem

  87. Rev 2007; 28: 163-8.

  88. Dreschsler C, Krane V, Ritz E, März W, Wanner C.

  89. Glycemic control and cardiovascular events in diabetic

  90. hemodialysis patient. Circulation 2009; 120: 2421-8.

  91. Sáenz GF, Rodríguez WE. Las Hemoglobinas Anormales. En: Sáenz GF, Rodríguez WE, Jiménez R, Salazar L, Valverde B, editores. Hematología Analítica. 5ª ed. San José: EDNASSS; 2008. p 195-3.

  92. Stuart MJ, Nagel RL. Sickle cell disease. Lancet 2004; 364: 1343-360.

  93. Sáenz GF, Granado A, Valverde K. Hemoglobinopatía Clínica. En: Sáenz GF, Rodríguez WE, Jiménez R, Salazar L, Valverde B, editores. Hematología Analítica. 5ª ed. San José: EDNASSS; 2008. p 205-19.

  94. Sáenz GF, Rodríguez WE, Chaves MA, Variantes estructurales de la Hemoglobina en Iberoamérica. Rev Biol Trop 1993; 41: 393-8

  95. Patrinos, G.P., B. Giardine, C. Riemer, W. Miller, D.H.K. Chui, N.P. Anagnou et al. Improvements in the HbVar database of human hemoglobin variants and thalassemia mutations for population and sequence variation studies. Nucl Acids Res. 32; 537-41. URL: http://globin.cse.psu.edu/hbvar/menu.html

  96. Thomas LB, Agosti SJ, Man MA, Mastorides SM. Screening for hemoglobinopathies during routine hemoglobin A1c testing using the Tosoh G7 Glycohemoglobin Analyzer. Ann Clin Lab Sci 2007; 3:251-5.

  97. Kutlar A, Huisman THJ. The detection of Hemoglobinopathies; techniques and diagnostic. Human Biochemical Genetics: A Laboratory Manual. New York: J. Wiley and Sons; 1991.

  98. Sáenz GF, Rodríguez WE. Estudios de la hemoglobina por electroforesis y HPLC. En: Sáenz GF, Rodríguez WE, Jiménez R, Salazar L, Valverde B, editores. Hematología Analítica. 5ª ed. San José: EDNASSS; 2008. p 649-61.

  99. Moo-Penn WF, Bechtel KC, Schmidt RM, Johnson MH, Jue DL, Schmidt DE Jr et al. Hemoglobin Raleigh (beta1 valine replaced by acetylalanine). Structural and functional characterization. Biochemistry 1977; 22: 4872-9.

  100. Landin B, Jeppsson JO. Rare beta chain hemoglobin variants found in Swedish patients during HBA1c analysis. Hemoglobin 1993; 4: 303-18.

  101. Behan KJ, Storey NM, Lee HK. Reporting variant hemoglobins discovered during hemoglobin A1c analysis. Clin Chim Acta 2009; 406: 124-30.

  102. Aldasouqi S, Solomon D, Bokhari S, Khan P, Muneera S, Gossain V. Glycohemoglobin A1c; a promising screening tool in gestational diabetes mellitus. Int J Diabetes Dev Ctries 2008; 28: 121-4.

  103. Hertel JK, Johansson S, Raeder H, Platou CG, Midthjell K, , Molven A, et al. Evaluation of four novel genetic variants affecting hemoglobin A1c levels in a population based type 2 diabetes cohort. BMC Med Genet 2011; 12: 20-5.

  104. Rai DK, Landin B, Griffiths WJ, Alvelius G. Identification of N-terminal acetylation in Hb Raleigh (beta1Val-->Ac-Ala) by electrospray tandem mass spectrometry. Rapid Commun Mass Spectrom 2002; 18: 1793-6.

  105. Castelly, R, Tempesta, A, Bianchi, A., Porro, T, Ivaldi, G., Capellini, MD. Unreliable estimation of HbAic due to the presence of Camperdown haemoglobin (beta 104 (G6) Arg-Ser). Diabet Med 2004; 21: 377-9.

  106. King, ME, Rifai, N, Malekpour, A. Hemoglobin Hope interferes with measurement of glycated hemoglobin by ion exchange chromatographty and electrophoresis. Clin Chem 1984; 30: 1106-7.

  107. Chen D, Crimmins DL, Hsu FF, Lindberg FP, Scott MG.. Hemoglobin Raleigh as the cause of a falsely increased hemoglobin A1C in an automated ion-exchange HPLC method. Clin Chem 1998; 6: 1296-301.

  108. Flückinger R, Winterhalter, KH. In vitro synthesis of hemoglobin A1c. FEBS Let 1976; 72: 356-60

  109. Bunn HF, Gabbay KM, Gallop PM. The glycosilation of hemoglobin: relevance to diabetes mellitus. Science 1978; 200: 21-5

  110. Rahbar, S. Glycosilated hemoglobins. En: Schneider, RG. University of Texas Medical Branch, Galveston. Editorial Texas Reports on Biology Medicine; 1981. Vol 40: 373-96.

  111. Sáenz GF. Las Hemoglobinas Glicosiladas. En: Sáenz GF, Chaves, MA, Rodríguez WE, Barrantes, A, Orlich, J. editores. Hematología Analítica. 3a. ed. San José: EDNASSS; 1995. P.389-97.

  112. John WG, Mosca A, Weykamp C, Goodall I. HbA1c stadarization: history, science and politics. Clin Biochem Rev 2007; 28: 163-8.

  113. Dreschsler C, Krane V, Ritz E, März W, Wanner C. Glycemic control and cardiovascular events in diabetic hemodialysis patient. Circulation 2009; 120: 2421-8.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Biomed. 2012;23

ARTíCULOS SIMILARES

CARGANDO ...