medigraphic.com
ENGLISH

Biotecnología Aplicada

ISSN 1027-2852 (Digital)
ISSN 0864-4551 (Impreso)
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2011, Número 4

<< Anterior Siguiente >>

Biotecnol Apl 2011; 28 (4)


El daño oxidativo afecta la consolidación de la memoria en ratas

Díaz-Hung ML, González ME, Fernández I, Horruitiner I, Piedra S
Texto completo Cómo citar este artículo Artículos similares

Idioma: Ingles.
Referencias bibliográficas: 38
Paginas: 250-254
Archivo PDF: 266.32 Kb.


PALABRAS CLAVE

estrés oxidativo, glutatión, L-butionin sulfoximina, enzimas antioxidantes, malonildialdehído, aprendizaje y memoria.

RESUMEN

El glutatión es un importante antioxidante celular, cuya disminución promueve el daño oxidativo y altera las interacciones sinápticas, a corto y a largo plazo. Su función en el aprendizaje y la memoria ha sido poco estudiada. Se decidió determinar el efecto de la administración del L-butionin sulfoximina sobre el contenido de glutatión, y los indicadores de daño oxidativo celular (malonildialdhehído, superóxido dismutasa, glutatión peroxidasa), a los siete días de la inyección intracerebroventricular, en la corteza frontal, el hipocampo y el cuerpo estriado, así como el efecto de la disminución del glutatión en el aprendizaje y la memoria, mediante la prueba de evitación pasiva. Los resultados sugirieron que el L-butionin sulfoximina induce un desbalance en la actividad enzimática antioxidante, que genera un daño en los componentes lipídicos celulares, y que existe un vínculo entre el daño oxidativo originado por la disminución de glutatión y la consolidación de la memoria.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Jiménez-Jiménez FJ, Alonso-Navarro H, Ayuso-Peralta L, Jabbour-Wadih T. Estrés oxidativo y enfermedad de Alzheimer. Rev Neurol 2006;42(7):419-27.

  2. Drake J, Kanski J, Varadarajan S, Tsoras M, Butterfield DA. Elevation of brain glutathione by gamma-glutamylcysteine ethyl ester protects against peroxynitrite-induced oxidative stress. J Neurosci Res. 2002;(68):776-84.

  3. Dalton TP, Chen Y, Schneider SN, Nebert DW, Shertzer HG. Genetically altered mice to evaluate glutathione homeostasis in health and disease. Free Radic Biol Med. 2004;37(10):1511-26.

  4. Chen J, Small-Howard A, Yin A, Berry MJ. The responses of Ht22 cells to oxidative stress induced by buthionine sulfoximine (BSO). BMC Neurosci [internet]. 2005 Feb 15 [cited 2011 Jun 14];6 [about 10 p.]. Available from: http://www.biomedcentral.com/1471-2202/6/10

  5. González ME, Fernández I, Bauza JY. Indicadores de estrés oxidativo en cerebros de ratas viejas con déficit cognitivo. Biotecnol Apl. 2007;24:145-50.

  6. Chi L, Ke Y, Luo C, Gozal D, Liu R. Depletion of reduced glutathione enhances motor neuron degeneration in vitro and in vivo. Neuroscience. 2007;144(3):991-1003.

  7. Izquierdo I, Bevilaqua LR, Rossato JI, Bonini JS, Medina JH, Cammarota M. Different molecular cascades in different sites of the brain control memory consolidation. Trends Neurosci. 2006;29(9):496-505.

  8. Ansari MA, Roberts KN, Scheff SW. Oxidative stress and modification of synaptic proteins in hippocampus after traumatic brain injury. Free Radic Biol Med. 2008;45(4):443-52.

  9. Clark JD, Gebhart GF, Gonder JC, Keeling ME, Kohn DF. Special Report: The 1996 Guide for the Care and Use of Laboratory Animals. ILAR J. 1997;38(1):41-48.

  10. Guidelines for the use of animals in Neuroscience Research. In: Olfert ED, Cross BM, McWilliam AA, editors. Guide to the care and use of experimental animals. Canadian Council on Animal Care. 2nd ed. Ottawa: Bradda Printing Services; 1993. p. 155-62.

  11. The use of animals in psychology. In: Olfert ED, Cross BM, McWilliam AA, editors. Guide to the care and use of experimental animals. Canadian Council on Animal Care. 2nd ed. Ottawa: Bradda Printing Services; 1993. p. 163-5.

  12. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 2nd ed. San Diego: Academic Press; 1986.

  13. Azbill RD, Mu X, Bruce-Keller AJ, Mattson MP, Springer JE. Impaired mitochondrial function, oxidative stress and altered antioxidant enzyme activities following traumatic spinal cord injury. Brain Res. 1997;765(2):283-90.

  14. Marklund S, Marlund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974;47(3):469-74.

  15. Flohe L, Gunzler WA. Assays of glutathione peroxidase. Methods Enzymol. 1984;105:114-21.

  16. Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol. 1978;52:302-10.

  17. Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-54.

  18. Cruz-Aguado R, Almaguer-Melian W, Díaz C, Lorigados L, Bergado J. Behavioral and biochemical effects of glutathione depletion in the rat brain. Brain Res Bull. 2001;55:327-33.

  19. Markesbery WR, Lovell MA. Damage to lipids, proteins, DNA, and RNA in mild cognitive impairment. Arch Neurol 2007;64:954-6.

  20. Fusco D, Colloca G, Lo Monaco MR, Cesari M. Effects of antioxidant supplementation on the aging process. Clin Interv Aging. 2007;2(3):377-87.

  21. Rueda-Orozco P, Montes-Rodríguez C, Soria-Gómez E, Herrera-Solís A, Hopkins R, Guzmán K, Próspero-García A, Ruiz-Contreras A, Próspero-García O. Dependencia de los sistemas de memoria al ciclo luz/oscuridad en la expresión de estrategias adaptativas. Primera parte. Salud Mental 2006; 29:19-24.

  22. Meister A. Glutathione deficiency produced by inhibition of its synthesis, and its reversal; applications in research and therapy. Pharmacol Ther. 1991;51(2):155-94.

  23. García R, González M, Fernández I, Castaño Y, Díaz M, Alberti E. Behavioral and oxidative metabolism disorders in a model of transient induced cerebral hipoperfusion in rats. Biotecnol Apl. 2008;25:332-8.

  24. Hsu M, Srinivas B, Kumar J, Subramaniant R, Andersen J. Glutathione depletion resulting in selective mitochondrial complex I inhibition in dopaminergic cells is via an NO-mediated pathway not involving peroxynitrite: implications for Parkinson’s disease. J Neurochem. 2005;92(5):1091-1103.

  25. Liddell JR, Dringen R, Crack PJ, Robinson SR. Glutathione peroxidase 1 and a high cellular glutathione concentration are essential for effective organic hydroperoxide detoxification in astrocytes. Glia. 2006;54(8):873-9.

  26. Lv SW, Wang XG, Mu Y, Zang TZ, Ji YT, Liu JQ, et al. A novel dicyclodextrinyl diselenide compound with glutathione peroxidase activity. FEBS J. 2007;274(15):3846-54.

  27. Oliveira-Marques V, Marinho HS, Cyrne L, Antunes F. Role of hydrogen peroxide in NF-kappaB activation: from inducer to modulator. Antioxid Redox Signal. 2009;11(9):2223-43.

  28. Kuo WN, Kocis JM. Nitration/S-nitrosation of proteins by peroxynitrite-treatment and subsequent modification by glutathione S-transferase and glutathione peroxidase. Mol Cell Biochem. 2002;233(1-2):57-63.

  29. Fisher AB. Redox signaling across cell membranes. Antioxid Redox Signal. 2009;11(6):1349-56.

  30. Brunk UT, Terman A. The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur J Biochem. 2002;269(8):1996-2002.

  31. Rougemont M, Do KQ, Castagne V. New model of glutathione deficit during development: Effect on lipid peroxidation in the rat brain. J Neurosci Res. 2002;70(6):774-83.

  32. Jiang D, Akopian G, Ho YS, Walsh JP, Andersen JK. Chronic brain oxidation in a glutathione peroxidase knockout mouse model results in increased resistance to induced epileptic seizures. Exp Neurol. 2000; 164(2):257-68.

  33. Steullet P, Neijt HC, Cuenod M, Do KQ. Synaptic plasticity impairment and hypofunction of NMDA receptors induced by glutathione deficit: relevance to schizophrenia. Neuroscience. 2006;137(3):807-19.

  34. Almaguer-Melian W, Cruz-Aguado R, Bergado JA. Synaptic plasticity is impaired in rats with a low glutathione content. Synapse. 2000;38(4):369-74.

  35. Li J, Wang C, Zhang JH, Cai JM, Cao YP, Sun XJ. Hydrogen-rich saline improves memory function in a rat model of amyloid-beta-induced Alzheimer’s disease by reduction of oxidative stress. Brain Res. 2010;1328:152-61.

  36. Veerendra Kumar MH, Gupta YK. Effect of different extracts of Centella asiatica on cognition and markers of oxidative stress in rats. J Ethnopharmacol. 2002;79(2):253-60.

  37. Butterfield DA, Galvan V, Lange MB, Tang H, Sowell RA, Spilman P, et al. In vivo oxidative stress in brain of Alzheimer disease transgenic mice: Requirement for methionine 35 in amyloid beta-peptide of APP. Free Radic Biol Med. 2010;48(1):136-44.

  38. Shukitt-Hale B, Erat SA, Joseph JA. Spatial learning and memory deficits induced by dopamine administration with decreased glutathione. Free Radic Biol Med. 1998;24(7-8):1149-58.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Biotecnol Apl. 2011;28

ARTíCULOS SIMILARES

CARGANDO ...