Entrar/Registro  
INICIO ENGLISH
 
Revista Médica MD
   
MENÚ

Contenido por año, Vol. y Num.

Índice de este artículo

Información General

Instrucciones para Autores

Mensajes al Editor

Directorio






>Revistas >Revista Médica MD >Año 2013, No. 3


De-León-Rendón JL, Yamamoto-Furusho JK
Papel de los microARN en la Colitis Ulcerosa Crónica Idiopática
Rev Med MD 2013; 4.5 (3)

Idioma: Español
Referencias bibliográficas: 64
Paginas: 174-180
Archivo PDF: 609.78 Kb.


Texto completo




RESUMEN

La Colitis Ulcerosa Crónica Idiopática (CUCI) es una enfermedad de origen multifactorial, de curso crónico e incurable que se caracteriza por remisiones y exacerbaciones. A pesar de ampliar el conocimiento de los mecanismos celulares y moleculares de la inflamación intestinal, su etiología y patogénesis son desconocidas. Los microARN (miARN) son pequeñas regiones de ARN de cadena sencilla, no codificantes, implicadas en la regulación post-transcripcional del 30% de los genes codificadores de proteínas. Las evidencias descritas destacan el importante papel de los miARN como contribuyentes a la susceptibilidad de la CUCI. El objetivo del presente trabajo es revisar el papel de los miARN en la CUCI y destacar su importancia como vía para el descubrimiento de los mecanismos de la enfermedad, su diagnóstico y terapéutica.


Palabras clave: Colitis Ulcerosa Crónica Idiopática, Enfermedad Inflamatoria Intestinal, microARN.


REFERENCIAS

  1. Podolsky D.K. Inflammatory Bowel Disease. N Engl J Med. 2002 Aug 8;347(6):417-29.

  2. 2.Sartor RB. Current concepts of the etiology and pathogenesis of ulcerative colitis and Crohn's disease. Gastroenterology Clinics of North America 1995; 475-507.

  3. 3.Fiocchi C. Inflammatory bowel disease: etiology and pathogenesis. Gastroenterology 1998; 115: 182-205.

  4. 4.Morahan G, Morel L. Genetics of autoimmune diseases in humans and in animal models. Curr Opin Immunol 2002; 14: 803-11.

  5. 5.Cho J. Update on inflammatory bowel disease genetics. Curr Gastroenterol Rep 2000; 2: 434-9.

  6. 6.Yamamoto Furusho JK. Immunogenetics of chronic ulcerative colitis. Rev Invest Clin 2003; 55(6): 705-10.

  7. 7.G. Gallagher. Interleukin-19: Multiple roles in immune regulation and disease. Cytokine & Growth Factor Reviews 2010; 21:345–352.

  8. 8.Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281-297.

  9. 9.Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843-854.

  10. 10.Wightman B, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993;75:855-862.

  11. 11.Reinhart BJ, Slack FJ, Basson M, et al. The 21- nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403:901-906.

  12. 12.Pasquinelli AE, Reinhart BJ, Slack F, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature. 2000; 408:86-89.

  13. 13.Griffiths-Jones S, Saini HK, van Dongen S, Bateman A, Enright AJ. miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008;36: D154-D158.

  14. 14.Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294: 853-858.

  15. 15.Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425:415-419.

  16. 16.Han J, Lee Y, et al. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 2004;18:3016-3027.

  17. 17.Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science. 2004;303:95-98.

  18. 18.Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell. 2003;115:209-216.

  19. 19.Zeng Y, Yi R, Cullen BR. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci USA. 2003;100:9779-9784.

  20. 20.Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15-20.

  21. 21.Guarnieri DJ, DiLeone RJ. MicroRNAs: a new class of gene regulators. Ann Med. 2008;40:197-208.

  22. 22.Jiang X, Tsitsiou E, Herrick SE, Lindsay MA. MicroRNAs and the regulation of fibrosis. FEBS J. 2010;277:2015-2021.

  23. 23.Garzon R, Calin GA, Croce CM. MicroRNAs in cancer. Annu Rev Med. 2009;60:167-169.

  24. 24.Malumbres R, Sarosiek KA, Cubedo E, et al. Differentiation stage-specific expression of microRNAs in B lymphocytes and diffuse large B-cell lymphomas. Blood. 2009;113:3754-3764.

  25. 25.Calin GA, Ferracin M, Cimmino A, et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med. 2005;353:1793-1801.

  26. 26.Lu LF, Liston A. MicroRNA in the immune system, microRNA as an immune system. Immunology. 2009;127:291-298.

  27. 27.Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol. 2003; 21:335-376.

  28. 28.Dunne A, O'Neill LA. Adaptor usage and Toll-like rece ptor signaling specificity. FEBS Lett. 2005;579:3330-3335.

  29. 29.Kracht M, Saklatvala J. Transcriptional and posttranscriptional control of gene expression in inflammation. Cytokine. 2002; 20: 91-106.

  30. 30.O'Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci U S A. 2007;104:1604-1609.

  31. 31.Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kB dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A. 2006;103:12481-12486.

  32. 32.Tili E, Michaille JJ, Cimino A, et al. Modulation of mi R - 155 and mi R - 125 bleve lsfollow inglipopolysaccharide/TNFa stimulation and their possible roles in regulating the reponse to endotoxin shock. J Immunol. 2007;179:5082-5089.

  33. 33.Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004;303: 83-86.

  34. 34.Zhou B, Wang S, et al. miR-150, a microRNAexpressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proc Natl Acad Sci U S A. 2007;104:7080-7085.

  35. 35.Wu H, Neilson JR, Kumar P, et al. miRNA profiling of naive, effector and memory CD8 T cells. PLoS One. 2007;2: e1020.

  36. 36.Sonkoly E, Wei T, Janson PC, et al. MicroRNAs: novel regulators involved in the pathogenesis of psoriasis? PLoS One. 2007;2: e610.

  37. 37.Stanczyk J, Pedrioli DM, Brentano F, et al. Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum. 2008;58:1001-1009.

  38. 38.Nakasa T, Miyaki S, Okubo A, et al. Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum. 2008;58:1284-1292.

  39. 39.Tan Z, Randall G, Fan J, et al. Allele-specific targeting of microRNAs to HLA-G and risk of asthma. Am J Hum Genet. 2007;81:829-834.

  40. Dai Y, Huang YS, Tang M, et al. Microarray analysis of microRNA expression in peripheral blood cells of systemic lupus erythematosus patients. Lupus. 2007;16:939-946.

  41. 41.Dai Y, Sui W, et al. Comprehensive analysis of microRNA expression patterns in renal biopsies of lupus nephritis patients. Rheumatol Int. 2009;29:749- 754.

  42. 42.Lowes MA, Bowcock AM, Kr ueger JG. Pathogenesis and therapy of psoriasis. Nature. 2007;445:866-873.

  43. 43.Ichihara A, Jinnin M, Oyama R, et al. Increased serum levels of miR-1266 in patients with psoriasis vulgaris. Eur J Dermatol. 2011 Nov 30. [Epub ahead of print].

  44. 44.Tang Y, Luo X, Cui H, et al. MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum. 2009;60:1065-1075.

  45. 45.Sushila R. Dalal, John H. Kwon. The Role of MicroRNA in Inflammatory Bowel Disease. Gastroenterology & Hepatology 2010; 11(6).

  46. 46.Glinsky GV. An SNP-guided microRNA map of fifteen common human disorders identifies a consensus disease phenocode aiming at principal components of the nuclear import pathway. Cell Cycle. 2008;7:2570-2583.

  47. 47.Glinsky GV. Disease phenocode analysis identifies SNP-guided microRNA maps (MirMaps) associated with human “master” disease genes. Cell Cycle. 2008; 7:3680-3694.

  48. 48.Fasseu M, Treton X, et al. Identification of Restricted Subsets of Mature microRNA Abnormally Expressed in Inactive Colonic Mucosa of Patients with Inflammatory Bowel Disease. PLoS ONE 2010; 5(10): e13160. doi:10.1371/journal.pone.0013160.

  49. 49.Xu H, Cheung IY, Guo HF, Cheung NK. MicroRNA miR-29 modulates expression of immunoinhibitory molecule B7-H3: potential implications for immune based therapy of human solid tumors. Cancer Res 2009; 69: 6275–81.

  50. 50.Kota J, Chivukula RR, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 2009; 137: 1005–17.

  51. 51.Flavin R, Smyth P, et al. miR-29b expression is associated with disease-free survival in patients with ovarian serous carcinoma. Int J Gynecol Cancer 2009; 19: 641–7.

  52. 52.Sander S, Bullinger L, Wirth T. Repressing the repressor: a new mode of MYC action in lymphomagenesis. Cell Cycle 2009; 8: 556–9.

  53. 53.Yan LX, Huang XF, et al. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. Rna 2008; 14: 2348–60.

  54. 54.Ferretti E, De Smaele E, et al. Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells. Embo J 2008; 27: 2616–27.

  55. 55.Gebeshuber CA, Zatloukal K, Martinez J. miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Rep 2009;10: 400–5.

  56. 56.Musiyenko A, Bitko V, Barik S. Ectopic expression of miR-126*, an intronic product of the vascular endothelial EGF-like 7 gene, regulates prostein translation and invasiveness of prostate cancer LNCaP cells. J Mol Med 2008; 86: 313–22.

  57. 57.Park SY, Lee JH, Ha M, Nam JW, Kim VN. miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat Struct Mol Biol 2009; 16: 23–9.

  58. 58.Li Z, Lu J, et al. Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc Natl Acad Sci U S A 2008;105: 15535–40.

  59. 59.Zhou Q, Souba WW, Croce CM, Verne GN. MicroRNA-29a regulates intestinal membrane permeability in patients with irritable bowel syndrome. Gut 2010; 59: 775–84.

  60. 60.Hollander D. Intestinal permeability, leaky gut, and intestinal disorders. Curr Gastroenterol Rep.1999; 1: 410–6.

  61. 61.Bian Z, Li L, et al. Role of miR-150-targeting c-Myb in colonic epithelial disruption during dextran sulphate sodium-induced murine experimental colitis and human ulcerative colitis. J Pathol. 2011; 225(4):544-53. doi: 10.1002/path.2907.

  62. 62.Pauley KM, Satoh M, et al. Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res Ther. 2008;10:R101.

  63. 63.Te JL, Dozmorov IM, et al. Identification of unique microRNA signature associated with lupus nephritis. PLoS One. 2010;5:e10344.

  64. 64.Wu F, Guo NJ, et al. Peripheral blood MicroRNAs distinguish active ulcerative colitis and Crohn's disease. Inflamm Bowel Dis. 2010 Sept 1; Epub ahead of print.



>Revistas >Revista Médica MD >Año2013, No. 3
 

· Indice de Publicaciones 
· ligas de Interes 






       
Derechos Resevados 2019