Entrar/Registro  
INICIO ENGLISH
 
Gaceta Médica de México
   
MENÚ

Contenido por año, Vol. y Num.

Índice de este artículo

Información General

Instrucciones para Autores

Mensajes al Editor

Directorio






>Revistas >Gaceta Médica de México >Año 2003, No. 5


Elinos-Báez CE, Maldonado V, Meléndez ZJ
Caspasas: moléculas inductoras de apoptosis
Gac Med Mex 2003; 139 (5)

Idioma: Español
Referencias bibliográficas: 84
Paginas: 493-499
Archivo PDF: 91.62 Kb.


Texto completo




RESUMEN

Las caspasas son proteínas clave en la transducción y ejecución de la señal apoptótica inducida por una diversidad de estímulos. Se encuentran en la célula como precursores inactivos que necesitan ser cortados para iniciar su actividad. Existen dos grandes grupos de caspasas, las denominadas iniciadoras y las ejecutoras. Las caspasas iniciadoras son activadas por autoproteólisis cuando son translocadas a compartimientos específicos o mediante adaptadores/activadores. Las caspasas ejecutoras son activadas mediante el corte específico mediado por las caspasas iniciadoras. Estas proteasas son las encargadas de los cortes finales de sustratos que provocan la morfología típica de la apoptosis. Entre éstos se encuentran proteínas de señal, de reparación de ADN, estructurales, factores de transcripción, etc. Las caspasas representan un nuevo paradigma de la transducción de la señal y se encuentran implicadas en un gran número de procesos fisiológicos y patológicos. En un futuro podrían servir como marcadores de procesos patológicos y como blanco de nuevas terapias.


Palabras clave: Apoptosis, caspasas, IAP.


REFERENCIAS

  1. Touchette N, Fogle S. Apoptosis it chimes with mitosis J. NIF. Res 1991;3:75-78.

  2. Thompson CB. Apoptosis in the patogénesis and treatment of disease.Science 1995;267:1456-1462.

  3. Cohen P, Eisenberg RA. Lpr and gld: single gene models of systemic autoinmunity and lymphoproliferative disease. Annu Rev Immunol 1991;9:243-69.

  4. Cohen JJ, Duke RC, Fado VA, Sellins KS. Apoptosis and programmed death in immunity. Ann Rev Immunol 1992;10:267-293.

  5. Thompson EB. Apoptosis. Ann Rev 1998;60:533-573.

  6. Hetts SW. To die or not to die. JAMA 1998;279:300-307.

  7. Nagata S. Apoptosis by death factor. Cell 1997;88:355-365.

  8. Majno G, Joris I. Apoptosis, oncosis and necrosis. An overview of cell death. Am J Pathol 1995;146:3-15.

  9. Kerr JF, Winterford CM, Brian B. Apoptosis its significance in cancer and cancer therapy. Cancer 1994;73:2013-2026.

  10. Pittman SM, Geyp M, Tiñan SJ, Gramacho CM, Strickland DH, Fraser MJ. Tubulin in apoptotic cell. In: Lavin M, Watters D. Editors. Programed cell death: the cellular and molecular biology of Apoptosis. Zwitzerland, Harwood Academic Publishers, 1993, pp 315-323.

  11. Kolber MA, Brochat KO, Landa-Gonzales B. Cytochalasin B induces cellular DNA fragmentation. FASEB J 1990;4:3021-3027.

  12. Sevill J, Hogg N, Ren Y, Haslett C. Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophages recognition of neutrophils undergo apoptosis. J Clin Invest 1992;90:1513-1522.

  13. Fado VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM. Exposure of phosphatidylserine on the surfase of Apoptotic lymphocytes trigger specific recognition and removal by Macrophages. J Immunol 1992;148:2207-2216.

  14. Krahling S, Callagen MK, Williamson P, Schlegel RA. Exposure phosphatidylserine is a general feature in the phagocytosis of apoptotic lymphocytes by macrophages. Cell Death Differ 1999;6:183-189.

  15. Fesus L, Thomazy V, Falus A. Induction and activation of tissues transglutaminase during programmed cell death. FEBS Lett 1987;224:104-108.

  16. Piacentini M, Fesus L, Farrace MG, Chibelli L, Pierda L, Melino G. The expresión of “tissue” transglutaminase in two human cancer cell lines is related with programmed cell death (apoptosis). Eur. J. Cell Biol.1991; 54: 246-254.

  17. McConkey DJ, Hartzell P, Orrenius. Rapid turnover of endogenous endonuclease activity in thymocytes: effects of inhibitors of macromolecular synthesis. Arch Biochem Biophys 1990;278:284-287.

  18. Brancolini C, Benedetti M, Schneider C. Microfilament reorganization during apoptosis: the role of Gas2, a posible substrato for ICE-like proteases. EMBO J 1995;14:5179-5190.

  19. Cryns VL, Bergeron L, Zhu H, Li H, Yuan J. Specific cleavaje of a-fodrin during Fas- and tumor necrosis factor-induced apoptosis is mediated by an interleukin-1b converting Enzime/Ced-3 proteasadistinct fron the Poly (ADP-ribose) polymerase protease. J Biol Chem 1996;271:31277-31282.

  20. Vanags DM, Pörn-Ares MI, Coppola S, Burgess DH, Orrenius S. Protease involvement fodrin cleavage and phosphatidilserine exposure in apoptosis. J Biol Chem 1996;31075-31085. Wyllie AH. Nature (London) 1980;284:555-556.

  21. Cotter TG, Lennon SV, Glynn JM, Green DR. Microfilament-disrupting agents prevent the formation of apoptosis bodies in tumor cells undergoing apoptosis. Cancer Res 1992;52:997-1005.

  22. Cerretti DP, Kozlosky CJ, Mosley B, Nelson N, Van Ness K, Greenstreet TA, March CJ, Kronheim SR, Black RA. Molecular cloning of the interleukin-1b converting enzime. Science 1992;256:97-100.

  23. Kidd VJ. Proteolytic activities mediate apoptosis. Annu Rev Physiol 1998;60:533-73.

  24. Cryns VL, Yuan J. Proteases to die for. Genes Dev 1998;12:1551-1570.

  25. Thornberry NA, Lazebnik Y. Caspases: enemies within. Science 1998;281:312-316.

  26. Tsao DHH, McDonagh T, Tellez JB, Hsu S, Malakian K, Xu G, Lin ll. Solution structure of N-TRADD and characterization of the Interaction of N-TRADD and C-TRAF2 a key step in the TNFR-1 signaling pathway. Molecular Cell 2000;5:1051-1057.

  27. Chou JJ, Matsuo H, Duan H, Wagner G. Solution structure of the RAIDD CARD and model for CARD/CARD interaction in caspase-2 and caspase-9 recruitment. Cell 1998;94:171-180.

  28. BUTT AJ, Harvey NL, Parasivam G, Kumar S. Dimerization and autoprocessing of the Nadd2 (caspase-2) precursor requieres both the prodomain and the carboxil-terminal regions. J Biol Chem 1998;273:6763-6768.

  29. Fraser A, Evan G. A licence to kill. Cell 1996;85:781-784.

  30. Keller JN, Kindy MS, Holtsberg FW, St. Clair DK, Yen HC, Germeyer A, Steiner SM, Bruce-Keller AJ, Hutchins JB, Mattson MP. Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury, supression of peroxynitrite production, lipid peroxidation and mitochondrial dysfunction. J Neurosci 1998;18:687-697.

  31. Huang B, Eberstadt M, Olejniczac ET, Meadows RP, Fesik SW. NMR Struucture and mutagenesis of the Fas (APO-1/CD95) Death domain. Nature 1996;384:638-641.

  32. Medema JP, Scaffidi C, Kischkel FC, Shevchenko A, Mann M, Krammer PH, Peter ME. FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). EMBO J 1997;16:2794-2804.

  33. Hakem R, Hakem A, Duncan G, Henderson JT, Woo M, Soengas MS, Elía A, de la Pompa JL, Kagi D, Khoo W. Differential requirements for caspase-9 in apoptotic pathways in vivo. Cell 1998;94:339-352.

  34. Muzio M, Stockwell BR, Stennicke HR, Salvesen GS, Dixit VM. An induced proximity model for caspase-8 activation. J Biol Chem 1998;273:2926-2930.

  35. Debatin KM, Kramer PH, Peter ME. Two CD95 (APO-1/Fas) signaling pathways. EMBO J 1998;17:1674-1687.

  36. Stennicke RH, Jurgensmeier JM, Shin H, Deveraux Q, Wolf BB, Yang X, Zhou Q, Eyerbe LM, Bredesen D. Pro-caspase-3 in a major physiologic target of caspase-8. J Biol Chem 1998;273:27084-27090.

  37. Li H, Shu H, Xu CJ, Yuan J. Cleavage of BID by caspase-8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998;94:491-501.

  38. Porter AG. Protein translocation in apoptosis. Trends Cell Biol 1999;9:394-401.

  39. Yoshida H, Kong YY, Yoshida R, Elia AJ, Hakem A, Hakem R, Penninger JM, Mak TW. Apaf-1 is required for mitochondrial Pathway of apoptosis and brain development. Cell 1998;94:739-750.

  40. Yang J, Liu X, Bhalla K. Prevention of apoptosis by bcl-2: release of cytochome c mitochondria blocked. Science 1997;275:1129-1132.

  41. Asquenazí A, Dixit VM. Death receptor, signaling.Science 1998;281:1305-1308.

  42. Boldin MP, Goncharov TM, Goltsev YV, Wallach D. Involvement of mach, a novel MORTI/FAAD-interactin portease in Fas/APO-1 and TNFReceptor-induced cell death. Cell 1996;85:803-815.

  43. Arch RH, Gedrich RW, Thompson CB. Tumor necrosis factor receptor-associated factors (TRAFs)-a family of adapter proteins that regulates life and death. Genes & Dev 1998;12:2821-2830.

  44. Evan G, Littlewood T. A matter of life and cell death. Science 1998:281;1317-1322.

  45. Kumar S, Paul A, Colussi PA. Prodomains-adaptors-oligomerization the pursuit of caspase activation in apoptosis. TIBS (Trends in Biochemical Science) 1999;24:1-4.

  46. Bandala E, Espinosa M, Maldonado V, Melendez-Zajgla J. Inhibitor of apoptosis-1 (IAP-1) expression and apoptosis in non-small-cell lung cancer cells exposed to gemcitabine. Biochem Pharmacol 2001;62:13-19.

  47. Bimbaum MJ, Clem RJ, Miller LK. An apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His secuence motifs. J Virol 1994;68:2521-2528.

  48. Deveraux QL, Roy N, Stennicke HR, Van Arsdale T, Shou Q, Srinivasula SM, Alnemri ES, Salvesen GS, Reed JC. IAPs block apoptotic events induced caspace-8 and cytochomec by direct inhibition distinct caspases. EMBO J 1998;17: 2215-2223.

  49. Tamm I, Wang Y, Sausville E, Soudiero DA, Vigna N, Ottersdort T, Reed JC. IAP-family protein survivin inhibits caspases activity and apoptosis induced by Fas (CD95), Bax, caspases and anticancer drugs. Cancer Res 1998;58:5315-5320.

  50. Adida C, Crotty PL, McGrath J, Diebold J, Altieri DC. Developmentally regulated expression of the novel cancer anti-apoptosis gene survivin in human and mouse differentiation. Am J Pathol 1998;152:43-49.

  51. Kawasaki H, Altieri DC, Lu CD, Toyoda M, Tenjo T, Tanigawa N. Inhibition of apoptosis by survivin predict shorter survival Rates in colorectal cancer. Cancer Res 1998;58:5071-5074.

  52. Lu CD, Altieri DC, Tanigawa N. Expresion of a novel anti-apoptosis gene, surviving correlated with tumor cell apoptosis and p53 accumulation in gastric carcinoma. Cancer Res 1998;58:1808-1812.

  53. Li F, Ambrosini G, Chu EY, Plescia J, Toning S, Marchisio PC. and Altieri D. C. Control de apoptosis and mitotic spindle checkpoint by survivin. Nature 1998;395:580-584.

  54. Jäättelä M. Escaping cell death: Survival proteins in cancer. Experimental Cell Research 1999;248:30-43.

  55. Marzo I, Brenner C, Zamzami N, Susin SA, Beutner G, Brdiczka D, Remy R, Xie ZH, Red JC, Kroemer G. The permeability Transition pore complex: a target for apoptosis regulation by caspases and bcl-2-related proteins. J Exp Med 1998;187:1261-1271.

  56. Oltvai ZN, and Korsmeyer. Checkpoint dueling dimers foil death wishers. Cell 1994;79:189-172.

  57. Cory S. Regulation of lymphocyte survival by the bcl-2 gene family. Ann Rev Immunol 1995;13:513-543.

  58. Adams JM, Cory S. The bcl-2 protein family: arbiters of cell survival. Science 1998;281:1322-1326.

  59. Orth K, Dixit VM. Bik and bak induce apoptosis downstream of CrmA but upstream of inhibitor of apoptosis. J Biol Chem 1997;272:8841-8844.

  60. Boise LH, Thompson CB. Bcl-XL can inhibit apoptosis in cells that have undergone Fas-induced activation. Proc Natl Acad Sci USA 1997;94:3759-3764.

  61. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. The release of cytochrome c from mitochondria: a primary site for bcl-2 regulation of apoptosis. Science 1997;275:1132-1136.

  62. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM et al. Prevention of apoptosis by bcl-2: release of cytochrome c from mitochondria blocked. Science 1997;275:1129-1132.

  63. Reed JC. Double identity for proteins of the bcl-2 family. Nature 1997;387:773-776.

  64. Chau BN, Cheng E, Kerr DA, Hardwich M. Aven, a novel inhibitor of caspase activation, bind Bcl-xL and Apaf-1. Molecular Cell 2000;6:31-40.

  65. Kaufman SH, Desnoyers S, Ottaviano Y, Davidson NE, Poirier G. Specific proteolytic cleavage of Poly (ADP-ribose) Polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res 1993;53:3973-3985.

  66. Tewari M, Beidler DR, Dixit VM. J. CrmA-imhibitable cleavage of the 70 kD protein component of the U1 smoll nuclear ribonuclease protein during Fas-and tumor necrosis factor induced apoptosis. Biol Chem 1995;270:18738-18741.

  67. Casiola Rosen L, Nicholson DW, Chong T, Rowan KR, Thomberry NA, Miller DK, Rosen A. Apopain/CCP32 cleaves protein that are essential for cellular repair: a fundamental principle of apoptotic death. J Exp Med 1996;183:1954-1964.

  68. Song Q, Lees-Miller SP, Kumar S, Zhang N, Chan DW, Smith GC, Jackson SP, Alnemri ES, Litwack G, Khanna KK, Lavin M. DNA-dependent protein kinase catalyte subunit: a target for an ICE-like protease in apoptosis. EMBO J 1996;15:3238-3245.

  69. Ghayur T, Hugunin M, Talanian RV, Ratnofsky S, Quinlan C, Emoto Y, Kharbanda S. Proteolytic activation of protein cinasa Cd an ICE/CE 3-like protease induce characteristics of apoptosis and its role in disease. J Exp Med 1996;184:2399-2404.

  70. Orth K, Chinnaiyan AM, Garg M, Froelich CJ, Dxit VM. The CED-3/ICE-like protease Mch2 is activated during apoptosis and cleaves the death substrate Lamina A J Biol Chem 1996;271:16443-16446.

  71. Enari M, Hug H, Nagata S. Involvement of an ICE-like protease in Fas-mediated apoptosis. Nature (London) 1995;375:78-81.

  72. Wang X, Zelenski NG, Yang J, Sakai J, Brown MS, Goldstein JL. Cleavage of sterol regulatory element binding proteins (SREBPs) by CPP32 during apoptosis. EMBO J 1996;15:1012-1020.

  73. Yeh WC, Shajinian A, Speiser D, Kraunus J, Billia F, Wakeham A, de-la-Pompa H, Ferrick D, Hum B, Iscove N, Mak TW. Learly lethality funtional NF-KB activation and increased sensitivity to TNF-induced cell death in TRAF-2 deficient mice. Immunity 1997;7:715-725.

  74. Kouzarides T. Funtion of pRb and p53: what´s the conection. Trends Cell Biol. 1995;5:448-450.

  75. Ucker DS, Meyers J, Obermiller PS. Activation driver T cell death. II quantitative diferences alone distinguish stimull triggering no transformed T cell proliferation or death. J Immunol 1992;149:1583-1592.

  76. Martin SJ, O´Brien GA, Nishioka WK, McGahon AJ, Mahboubi A, Saido TC, Green DR. Proteolisis of fodrin (non erithroide spectrin) during apoptosis. J Biol Chem 1995;270:6425-6428.

  77. An B, Dou QP. Cleavage of retinoblastoma protein during apoptosis: an inerleukin 1b-converting enzime-like protease as candidate. Cancer Res. 1996;56:438-442.

  78. Na S, Chuang TH, Cunninham A, Turi TG, Hanke JH, Bockoch GM, Danley DE. D4-GDI, a substrato of CPP32, is proteolyzed during Fas-induced apoptosis. J Bio Chem 1996;271:11209-11213.

  79. Rodríguez I, Matsura K, Ody C, Nagata SY, Vasalli P. Systemic injections of a tripeptide inhibits the intracellular activation of CPP 32-like proteases in vivo and fully protects mice against Fas-mediated fulminant liver destruction and death. J Exp Med 1996;184:2067-2072.

  80. Fisher DE. Apoptosis in cancer therapy: raising the threshold. Cell 1994;78:539-542.

  81. Mairesse N, Horman S, Mosselmans R, Galand P. Antisense inhibition of the 27 kDa heat shock protein production affects growth rate and cytoeskeletal organization in MCF-7 cells. Cell Biol Int 1996;20:205-212.

  82. Ambrosini G, Adida C, Sirugo G, Altieri DC. Induction of apoptosis and inhibition of cell proliferation by survivin gene targeting. J Biol Chem 1998;273:11177-11182.

  83. Reed JC. Promise and problems of bcl-2 antisense therapy (editorial; comment). J. Natl. Cancer Inst. 1997;89:988-990.

  84. Webb A, Cunningham D, Cotter F, Clarke PA, di Stefano F, Ross P, Corbo M, Dzicwanowska Z. BCL-2 antisense therapy in Patiens with non-Hodgkin lymphoma. Lancet 1997;349:1137-1141.



>Revistas >Gaceta Médica de México >Año2003, No. 5
 

· Indice de Publicaciones 
· ligas de Interes 






       
Derechos Resevados 2019