Entrar/Registro  
INICIO ENGLISH
 
Gaceta Médica de México
   
MENÚ

Contenido por año, Vol. y Num.

Índice de este artículo

Información General

Instrucciones para Autores

Mensajes al Editor

Directorio






>Revistas >Gaceta Médica de México >Año 2014, No. 5


Genis-Mendoza AD, Beltrán-Villalobos I, Nicolini-Sánchez H
Evaluación conductual del fenotipo «esquizofrenia» en un modelo animal por lesión neonatal del hipocampo ventral en ratas juveniles y adultas
Gac Med Mex 2014; 150 (5)

Idioma: Español
Referencias bibliográficas: 59
Paginas: 420-431
Archivo PDF: 317.28 Kb.


Texto completo




RESUMEN

La esquizofrenia es un grave trastorno mental que afecta a una de cada 100 personas en el mundo y se caracteriza por la distorsión de los pensamientos y percepciones. Se han desarrollado diversos modelos animales para el estudio de la esquizofrenia basados principalmente en el estudio del mecanismo de acción de los antipsicóticos. En el presente trabajo mostramos varias de las pruebas conductuales clásicas (memoria, interacción social [IS] e inhibición de prepulso) relacionadas con la enfermedad, utilizando el modelo de la lesión neonatal en el hipocampo ventral (LNHV), en ratas juveniles y adultas. El modelo animal de la LNHV es un modelo heurístico que discrimina, mediante las pruebas conductuales, al fenotipo «tipo-esquizofrenia» de otros paradigmas conductuales como el de la depresión y la ansiedad, específicamente en los animales adultos. El estudio de la genómica de este modelo promete ser un importante generador de genes candidatos para la esquizofrenia en el ser humano.


Palabras clave: Esquizofrenia, Modelos animales, Lesión neonatal en el hipocampo ventral.


REFERENCIAS

  1. Msghina M, Liberg B. [Schizophrenia, neurodegeneration and antipsychotic agents]. Lakartidningen. 2009;106(47):3183.

  2. Ardizzone I, Marconi A, Nardecchia F. [Obstetric complications and early-onset schizophrenia: a case-control study]. Riv Psichiatr. 2009;44(2):117-21.

  3. Gioiosa L, Iannitelli A, Aloe L. Stress, anxiety schizophrenia and neurotrophic factors: the pioneer studies with nerve growth factor. Riv Psichiatr. 2009;44(2):88-94.

  4. Tovilla CA, Camarena B, Apiquián R, Nicolini H. [Association study and meta-analysis of the apolipoprotein gene and schizophrenia]. Gac Med Mex. 2008;144(2):79-83.

  5. Fresan A, Apiquián R, Ulloa R, Nicolini H. Reliability study of the translation into Spanish of the PRIME Screen Questionnaire for Prodromic Symptoms. Actas Esp Psiquiatr. 2007;35(6):368-71

  6. Snowden A. Classification of schizophrenia. Part one: the enduring existence of madness. Br J Nurs. 2009;18(19):1176-80.

  7. Urraca N, Camarena B, Aguilar A, et al. Association study of DRD3 gene in schizophrenia in mexican sib-pairs. Psychiatric Res. 2011;190(2-3): 367-8.

  8. Charych EI, Liu F, Moss SJ, Brandon NJ. GABA(A) receptors and their associated proteins: implications in the etiology and treatment of schizophrenia and related disorders. Neuropharmacology. 2009;57(5-6): 481-95.

  9. Contreras J, Camarena B, Hare L, et al. The serotonin transporter 5-HTTPR polymorphism is associated with current and lifetime depression in persons with chronic psychotic disorders. Acta Psychiatr Scand. 2009;119(2):117-27.

  10. Ulloa RE, Nicolini H, Fernández-Guasti A. Age differences in an animal model of obsessive-compulsive disorder: participation of dopamine: dopamine in an animal model of OCD. Pharmacol Biochem Behav. 2004;78(4):661-6.

  11. Ulloa RE, Nicolini H, Fernández-Guasti A. Sex differences on spontaneous alternation in prepubertal rats: implications for an animal model of obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2004;28(4):687-92.

  12. Fernández-Guasti A, Ulloa RE, Nicolini H. Age differences in the sensitivity to clomipramine in an animal model of obsessive-compulsive disorder. Psychopharmacology. 2003;166(3):195-201.

  13. Ulloa RE, Nicolini H, Avila M, Fernández-Guasti A. Age onset subtypes of obsessive compulsive disorder: differences in clinical response to treatment with clomipramine. J Child Adolesc Psychopharmacol. 2007; 17(1):85-96.

  14. Willner P. Handdook of depression and anxiety. Abiological approach. Nueva York: Maercel Dekker; 1994.

  15. Genis AD, Lopéz-Rubacava C. ¿Es posible modelar esquizofrenia en un modelo animal? El Residente. 2011;6(2):120-6.

  16. Powell SB. Models of neurodevelopmental abnormalities in schizophrenia. Curr Top Behav Neurosci. 2010;4:435-81.

  17. Lipska BK, Jaskiw GE, Weinberger DR. Postpubertal emergence of hyperresponsiveness to stress and to amphetamine after neonatal excitotoxic hippocampal damage: a potential animal model of schizophrenia. Neuropsychopharmacology. 1993;9(1):67-75.

  18. Le Pen G, Grottick AJ, Higgins GA, Martin JR, Jenck F, Moreau JL. Spatial and associative learning deficits induced by neonatal excitotoxic hippocampal damage in rats: further evaluation of an animal model of schizophrenia. Behav Pharmacol. 2000;11(3-4):257-68.

  19. Lipska BK, Weinberger DR. To model a psychiatric disorder in animals: schizophrenia as a reality test. Neuropsychopharmacology. 2000;23(3): 223-39.

  20. Genis-Mendoza AD, Gallegos-Silva RI, López-Casamichana M, López-Rubalcava C, Nicolini H. Gene expression profiles of nucleus accumbens, prefrontal cortex and hippocampusin in an animal model of schizophrenia: a proposal for candidate genes. Actas Esp Psiquiatr. 2013;41(3):154-63.

  21. Zimmermann M. Ethical principles for the maintenance and use of animals in neuroscience research. Neurosci Lett. 1987;73(1):1.

  22. Lipska BK, Jaskiw GE, Chrapusta S, Karoum F, Weinberger DR. Ibotenic acid lesion of the ventral hippocampus differentially affects dopamine and its metabolites in the nucleus accumbens and prefrontal cortex in the rat. Brain Res. 1992;585(1-2):1-6.

  23. López-Rubalcava C, Fernández-Guasti A, Urba-Holmgren R. Age-dependent differences in the rat’s conditioned defensive burying behavior: effect of 5-HT1A compounds. Dev Psychobiol. 1996;29(2): 157-69.

  24. Barros D, Amaral OB, Izquierdo I, et al. Behavioral and genoprotective effects of Vaccinium berries intake in mice. Pharmacol Biochem Behav. 2006;84(2):229-34.

  25. Mello PB, Benetti F, Cammarota M, Izquierdo I. Effects of acute and chronic physical exercise and stress on different types of memory in rats. An Acad Bras Cienc. 2008;80(2):301-9.

  26. Zendehrouh S, Bakouie F, Gharibzadeh S. Modeling schizophrenic-like neuronal patterns using nonlinear delayed differential equations. Comput Biol Med. 2009;39(11):1058-62.

  27. Chen T, Guo ZP, Jiao XY, et al. Peoniflorin suppresses tumor necrosis factor-α induced chemokine production in human dermal microvascular endothelial cells by blocking nuclear factor-κB and ERK pathway. Arch Dermatol Res. 2011;303(5):351-60.

  28. Flores G, Alquicer G, Silva-Gómez AB, et al. Alterations in dendritic morphology of prefrontal cortical and nucleus accumbens neurons in post-pubertal rats after neonatal excitotoxic lesions of the ventral hippocampus. Neuroscience. 2005;133(2):463-70.

  29. Silva-Gómez AB, Bermudez M, Quirion R, Srivastava LK, Picazo O, Flores G. Comparative behavioral changes between male and female postpubertal rats following neonatal excitotoxic lesions of the ventral hippocampus. Brain Res. 2003;973(2):285-92.

  30. Miwa M, Tsuboi M, Noguchi Y, Enokishima A, Nabeshima T, Hiramatsu M. Effects of betaine on lipopolysaccharide-induced memory impairment in mice and the involvement of GABA transporter 2. J Neuroinflammation. 2011;8:153.

  31. Castner SA, Goldman-Rakic PS, Williams GV. Animal models of working memory: insights for targeting cognitive dysfunction in schizophrenia. Psychopharmacology. 2004;174(1):111-25.

  32. Huerta-Rivas A, López-Rubalcava C, Sánchez-Serrano SL, Valdez- Tapia M, Lamas M, Cruz SL. Toluene impairs learning and memory, has antinociceptive effects, and modifies histone acetylation in the dentate gyrus of adolescent and adult rats. Pharmacol Biochem Behav. 2012;102(1):48-57.

  33. Ago Y. [Beneficial effect of galantamine on sensory information-processing deficits]. Yakugaku Zasshi. 2010;130(10):1305-10.

  34. Peleg-Raibstein D, Knuesel I, Feldon J. Amphetamine sensitization in rats as an animal model of schizophrenia. Behav Brain Res. 2008;191(2):190-201.

  35. Swerdlow NR, Taaid N, Oostwegel JL, Randolph E, Geyer MA. Towards a cross-species pharmacology of sensorimotor gating: effects of amantadine, bromocriptine, pergolide and ropinirole on prepulse inhibition of acoustic startle in rats. Behav Pharmacol. 1998;9(5-6): 389-96.

  36. Mostalac-Preciado CR, de Gortari P, López-Rubalcava C. Antidepressant- like effects of mineralocorticoid but not glucocorticoid antagonists in the lateral septum: interactions with the serotonergic system. Behav Brain Res. 2011;223(1):88-98.

  37. López-Rubalcava C, Hen R, Cruz SL. Anxiolytic-like actions of toluene in the burying behavior and plus-maze tests: differences in sensitivity between 5-HT (1B) knockout and wild-type mice. Behav Brain Res. 2000;115(1):85-94.

  38. Yaksh TL. Pharmacology and mechanisms of opioid analgesic activity. Acta Anaesthesiol Scand. 1997;41(1 Pt 2):94-111. A.D. Genis-Mendoza, et al.: Evaluación conductual del fenotipo «esquizofrenia» 431

  39. Salter MW, Pitcher GM. Dysregulated Src upregulation of NMDA receptor activity: a common link in chronicpain and schizophrenia. FEBS J. 2012;279(1):2-11.

  40. Sigurdsson T, Stark KL, Karayiorgou M, Gogos JA, Gordon JA. Impaired hippocampal-prefrontal synchrony in a genetic mouse model ofschizophrenia. Nature. 2010;464(7289):763-7.

  41. Berg SA, Chambers RA. Accentuated behavioral sensitization to nicotine in the neonatal ventral hippocampal lesion model of schizophrenia. Neuropharmacology. 2008;54(8):1201-7.

  42. Flores G, Alquicer G, Silva-Gómez AB, et al. Alterations in dendritic morphology of prefrontal cortical and nucleus accumbens neurons in post-pubertal rats after neonatal excitotoxic lesions of the ventral hippocampus. Neuroscience. 2005;133(2):463-70.

  43. Alquicer G, Morales-Medina JC, Quirion R, Flores G. Postweaning social isolation enhances morphological changes in the neonatal ventral hippocampal lesion rat model of psychosis. J Chem Neuroanat. 2008;35(2):179-87.

  44. Rüter K, Staab D, Magdorf K, Bisson S, Wahn U, Paul K. The 12-min walk test as an assessment criterion for lung transplantation in subjects with cystic fibrosis. J Cyst Fibros. 2003;2(1):8-13.

  45. Al-Amin HA, Weinberger DR, Lipska BK. Exaggerated MK-801-induced motor hyperactivity in rats with the neonatal lesion of the ventral hippocampus. Behav Pharmacol. 2000,11(3-4):269-78.

  46. Lee PR, Brady DL, Shapiro RA, Dorsa DM, Koenig JI. Social interaction deficits caused by chronic phencyclidine administration are reversed by oxytocin. Neuropsychopharmacology. 2005;30(10):1883-94.

  47. Lipska BK, Weinberger DR. A neurodevelopmental model of schizophrenia: neonatal disconnection of the hippocampus. Neurotox Res. 2002;4(5-6):469-75.

  48. Flores G, Alquicer G, Silva-Gómez AB, et al. Alterations in dendritic morphology of prefrontal cortical and nucleus accumbens neurons in post-pubertal rats after neonatal excitotoxic lesions of the ventral hippocampus. Neuroscience. 2005;133(2):463-9.

  49. Al-Amin HA, Atweh SF, Jabbur SJ, Saadé NE. Effects of ventral hippocampal lesion on thermal and mechanical nociception in neonates and adult rats. Eur J Neurosci. 2004;20(11):3027-34.

  50. de la Fuente-Sandoval C, Favila R, Gómez-Martín D, León-Ortiz P, Graff-Guerrero A. Neural response to experimental heat pain in stable patients with schizophrenia. J Psychiatr Res. 2012;46(1):128-34.

  51. Buckley PF, Miller BJ, Lehrer DS, Castle DJ. Psychiatric comorbidities and schizophrenia. Schizophr Bull. 2009;35(2):383-402.

  52. Wood GK, Quirion R, Srivastava LK. Early environment contributes to developmental disruption of MPFC after neonatal ventral hippocampal lesions in rats. Synapse. 2003;50(3):223-32.

  53. Sams-Dodd F, Lipska BK, Weinberger DR. Neonatal lesions of the rat ventral hippocampus result in hyperlocomotion and deficits in social behaviour in adulthood. Psychopharmacology 1997;132(3):303-10.

  54. Lipska BK, Weinberger DR. Delayed effects of neonatal hippocampal damage on haloperidol-induced catalepsy and apomorphine-induced stereotypic behaviors in the rat. Brain Res Dev Brain Res. 1993;75(2): 213-22.

  55. Andersen SL, Thompson AT, Rutstein M, Hostetter JC, Teicher MH. Dopamine receptor pruning in prefrontal cortex during the periadolescent period in rats. Synapse. 2000;37(2):167-9.

  56. Teicher MH, Andersen SL, Hostetter JC. Evidence for dopamine receptor pruning between adolescence and adulthood in striatum but not nucleus accumbens. Brain Res Dev Brain Res. 1995;89(2):167-72.

  57. Feinberg I. Cortical pruning and the development of schizophrenia. Schizophr Bull. 1990;16(4):567-70.

  58. Feinberg I, de Bie E, Davis NM, Campbell IG. Topographic differences in the adolescent maturation of the slow wave EEG during NREM sleep. Sleep. 2011;34(3):325-33.

  59. Stevens JR. Abnormal reinnervation as a basis for schizophrenia: a hypothesis. Arch Gen Psychiatry. 1992;49(3):238-43. Erratum in: Arch Gen Psychiatry. 1992;49(9):708.



>Revistas >Gaceta Médica de México >Año2014, No. 5
 

· Indice de Publicaciones 
· ligas de Interes 






       
Derechos Resevados 2019