Entrar/Registro  
INICIO ENGLISH
 
TIP Revista Especializada en Ciencias Químico-Biológicas
   
MENÚ

Contenido por año, Vol. y Num.

Índice de este artículo

Información General

Instrucciones para Autores

Mensajes al Editor

Directorio






>Revistas >TIP Revista Especializada en Ciencias Químico-Biológicas >Año 2015, No. 1


Gómez-Espinosa C, Gío-Argáez R, Carreño VM
Estado del conocimiento de la durofagia en el registro fósil: interacción depredador-presa en moluscos marinos (Clases Gastropoda y Bivalvia)
TIP Rev Esp Cienc Quim Biol 2015; 18 (1)

Idioma: Español
Referencias bibliográficas: 59
Paginas: 61-70
Archivo PDF: 963.09 Kb.


Texto completo




RESUMEN

La depredación como un mecanismo evolutivo, de diversificación y biomineralización es un tópico de gran interés. Un tipo específico de depredación es la durofagia que se define como el hábito alimenticio de los animales que consumen organismos con un esqueleto duro mineralizado, ya sea concha o exoesqueleto. Los moluscos representan una fuente muy importante para examinar la depredación durófaga en el registro fósil debido a su distribución mundial, abundancia, buena preservación y a que habitan en una gran variedad de ambientes. En este trabajo se revisa el número de artículos publicados en revistas de circulación internacional que se enfocan en el tema de la durofagia y que tienen como potenciales presas a gasterópodos y bivalvos marinos fósiles. Se recuperaron y revisaron 101 artículos sobre este tema, enfocados en seis tipos de evidencia: perforación, reparación y fragmentación de la concha, mordidas, “punctures” y coprolitos. La mayoría de los ejemplos correspondieron a moluscos del Cenozoico. En general hay más registros en la zona tropical. Durante el Paleozoico, la mayoría de las veces, no se identificó el potencial depredador; esta tendencia continuó en el Mesozoico pero se reconoció la depredación de gasterópodos y bivalvos por parte de gasterópodos carnívoros, artrópodos, peces y reptiles. Durante el Cenozoico dominó la depredación por parte de gasterópodos natícidos y murícidos y se reconoció también la depredación por parte de artrópodos, peces y mamíferos.


Palabras clave: Bivalvos, depredación, durofagia, fósiles, Gasterópodos.


REFERENCIAS

  1. Begon, M., Townsend, C.R. & Harper, J.L. Ecology from individuals to ecosystems. (Wiley-Blackwell, United Kingdom, 2006).

  2. Vermeij, G.J. Evolution and escalation, an ecological history of life. (Princeton University Press, Princeton, 1987).

  3. Morris, S.C. & Bengtson, S. Cambrian predators: possible evidence from boreholes. Journal of Paleontology 68, 1-23 (1994).

  4. Kowalewski, M. & Kelley, P.H. The fossil record of predation. The Paleontology Society Papers 8, 1–398 (2002).

  5. Skovsted, C.B., et al. Early Cambrian record of failed durophagy and shell repair in an epibenthic mollusk. Biology Letters 3, 314-317 (2007).

  6. Walker, S.E. & Brett, C.E. The fossil record of shell boring by snails Post Paleozoic patterns in marine predation: was there a Mesozoic and Cenozoic marine predatory revolution?. Paleontological Society Papers 8, 119-194 (2002).

  7. Aronson, R.B. in Palaeobiology II (ed. Briggs, D.E.G. & Crowther P.R.) 393–397 (Blackwell Science, Oxford, 2001).

  8. Marshall, C.R. Explaining the Cambrian “explosion” of animals. Annual Review of Earth Planetary Sciences 34, 355–384 (2006).

  9. Bottjer, D.J., Hagadorn, J.W. & Dornbos, S.Q. The Cambrian substrate revolution. GSA Today 10, 1–7 (2000).

  10. Bengtson, S. & Yue, Z. Predatorial borings in Late Precambrian mineralized exoskeletons. Science 257, 367–369 (1992).

  11. Vermeij, G.J. The Mesozoic marine revolution: Evidence from snails, predators, and grazers. Paleobiology 3, 245–258 (1977).

  12. Vermeij, G.J. Traces and trends of predation, with special reference to bivalve animals. Palaeontology 26, 455-465 (1983).

  13. Galle, A. & Mikulas, R. Evidence of predation on the rugose coral Calceola sandalina (Devonian, Czech Republic). Ichnos 10, 41-45 (2003).

  14. Mapes, R.H., Fahrer, T.R. & Babcock, L.E. Sublethal and lethal injuries of Pennsylvanian conularids from Oklahoma. Journal of Paleontology 63, 34–37 (1989).

  15. Martinell, J., Kowalewski, M. & Domenech, R. Drilling predation on serpulid polychaetes (Ditrupa arietina) from the Pliocene of the Cope Basin, Murcia Region, Southeastern Spain. PLoS ONE 7, e34576 (2012).

  16. Hoffmeister, A.P., Kowalewski, M., Bambach, R.K. & Baumiller, T.K. Intense drilling predation in the Carboniferous brachiopod Cardiarina cordata Cooper 1956. Lethaia 36, 107–118 (2003).

  17. Baumiller, T.K. & Gahn, F.J. Reconstructing predation pressure on crinoids: estimating arm-loss rates from regenerating arms. Paleobiology 39, 40-51 (2012).

  18. Klompmaker, A.A. Drilling and crushing predation on scaphopods from the Miocene of the Netherlands. Lethaia 44, 429-439 (2011).

  19. Ruiz, F. et al. Predation on Neogene ostracods of Southwestern Spain. Rivista Italiana di Paleontologia e Stratigrafia 116, 253-260 (2010).

  20. Huber, D.R., Eason, T.G., Hueter, R.E. & Motta, P.J. Analysis of the bite force and mechanical design of the feeding mechanism of the durophagous horn shark Heterodontus francisci. J. Exp. Biol. 208, 3553-3571 (2005).

  21. Kowalewski, M. The fossil record of predation: an overview of analytical methods. Paleontological Society Papers 8, 3-41 (2002).

  22. Lindstrom, A. & Peel, J.S. Repaired injuries shell form in some Paleozoic pleurotomarioid gastropods. Acta Palaeontologica Polonica 50, 697-704 (2005).

  23. Harper, E.M. & Skelton, P.W. The Mesozoic marine revolution and epifaunal bivalves. Scripta Geologica Special Issue 2, 127-153 (1993).

  24. Alexander, R. R. & Dietl, G. P. in Predator—prey interactions in the fossil record (ed. Kelley, P.H., Kowaleski, M. & Hansen, T.H.) 141-176 (Kluwer Academic/Plenum Publishers, New York, 2003).

  25. Lindstrom, A. & Peel, J.S. Shell repair and shell form in Jurassic pleurotomarioid gastropods from England. Bulletin of Geosciences 85, 541-550 (2010).

  26. Vermeij, G.J., Zipser, E. & Zardini, R. Breakage-induced shell repair in some gastropods from the Upper Triassic of Italy. Journal of Paleontology 56, 233-235 (1982).

  27. Vermeij, G.J. in The fossil record of predation (ed. Kowalewsky, M. & Kelley, P.H.) 375–393 (Kluwer Academic/Plenum Publishers, New York, 2002).

  28. Vermeij, G.J., Schindel, D.E. & Zipser, E. Predation through geological time: evidence from gastropod shell repair. Science 214, 1024-1026 (1981).

  29. Conway, S. & Whittington, H.B. The animals of the Burgess Shale. Scientific American 241, 122-133 (1979).

  30. Signor, P.W. & Brett, C.E. The Mid-Paleozoic precursor to the Mesozoic marine revolution. Paleobiology 10, 229-245, (1984).

  31. Alexander, R.R. Resistance to and repair of shell breakage induced by durophages in Late Ordovician brachiopods. Journal of Paleontology 60, 273-285 (1986).

  32. Harper, D.E. Trends in the spiny lobster commercial fishery of Florida, 1960-1990. Natural Marine Fishery MIN-91/92-01, 1-29, (1991).

  33. Massare, J.A. Tooth morphology and prey preference of Mesozoic marine reptiles. Journal of Vertebrate Paleontology 7, 121-137 (1987).

  34. Kear, B.P. First gut contents in a Cretaceous sea turtle. Biology Letters 2, 113–115 (2006).

  35. Anderson, R.C. Octopus bites clam. The Festivus 26, 58-59 (1994).

  36. Baluk, W. & Radwanski, A. Stomatopod predation upon gastropods from Korytnica basin, and from other classical Miocene localities in Europe. Acta Geologica Polonica 46, 79-304 (1996).

  37. Vermeij, G.J. A natural history of shells (Princeton University Press, Princeton, 1993).

  38. Carter, R.M. On the Biology and Paleontology of some predators of bivalved Mollusca. Palaeogeography, Paleoclimatology, Paleoecology 4, 29-65 (1968).

  39. Schweitzer, C. E. & Feldmann, R.M. The decapoda (Crustacea) as predators on mollusca through geologic time. Palaios 25, 167-182 (2010).

  40. Sohi, N.F. The fossil record of shell boring by snails. American Zoologist 9, 725-734 (1969).

  41. Leighton, L.R. Inferring predation intensity in the marine fossil record. Paleobiology 28, 328-342 (2002).

  42. Bucher, W.H. A shell-boring gastropod in a Dalmanella bed of Upper Cretaceous age. American Journal of Science 236, 1-7 (1938).

  43. Mondal, S., Harries, P.J., Paul, S. & Herbert, G.S. Paleoecological significance of coupling metrics of successful and unsuccessful shell-breaking predation: examples using Neogene bivalve prey. Palaeogeography, Palaeoclimatology, Palaeoecology 399, 89-97 (2014).

  44. Speden, I.G. Predation on New Zealand Cretaceous species of Inoceramus (Bivalvia) New Zealand. Journal of Geology and Geophysic 14, 56-60 (1971).

  45. Zaton, M. & Salamon, M.A. Durophagous predation on Middle Jurassic molluscs as evidenced from shell fragmentation. Palaeontology 51, 63–70 (2008).

  46. Tatsuo, O., Chigusa, O. & Takehiro, S. Increase of crushing predation recorded in fossil shell fragmentation. Paleobiology 29, 520-526 (2003).

  47. Merle, D. Premiere etude taphonomique de la predation affectant de grands mollusques bentiques dans l’Eocene de Gan (Pyrenées-Atlantiques, France), Comptes Rendus de l’ Academie des Sciences, series II. Sciencies de la Terre et des Planetes 330, 217-220 (2000).

  48. Oji, T., Ogaya, C.V. & Sato, T. Increase in shell-crushing predation recorded in shell fragmentation. Paleobiology 29, 520-526 (2003).

  49. Baluk, W. & Radwanski, A. Stomatopod predation upon gastropods from the Korytnica Basin, and from other classical Miocene localities in Europe. Acta Geologica Polonica 46, 279-304 (1996).

  50. Geary, D.H., Howard, J.D. & Reaka-Kudla, J.S. Stomatopod predation on fossil gastropods from the Plio-Pleistoceno of Florida. Journal of Paleontology 65, 355-360 (1991).

  51. Phipps, K.J. Evidence of predation on Gryphaea (Bilobissa) lituola Lamarck, 1819 from the Oxford Clay Formation of South Cave. Proceedings of the Geologists Association 119, 277-285 (2008).

  52. Kauffman, E.G. Ptychodus predation in a Cretaceous Inoceramus. Paleontology 15, 439–444 (1972).

  53. Kear, B.P. Inferred vertebrate bite marks on an Early Cretaceous unionoid bivalve from Lightning Ridge, New South Wales, Australia. Alcheringa 32, 65-71 (2008).

  54. Hoffmeister, A.P., Kowalewski, M., Baumiller, T.K. & Bambach, R.K. Drilling predation on Permian brachiopods and bivalves from the Glass Mountains, west Texas. Acta Palaeontologica Polonica 49, 443–454 (2004).

  55. Bambach, R.K. Seafood through time: Changes in biomass, energetics, and productivity in the marine ecosystem. Paleobiology 19, 372-397 (1993).

  56. Ebbestad, J.O.R. & Stott, C.A. Failed Predation in Late Ordovician gastropods (Mollusca) from Manitoulin Island, Ontario Canada. Canadian Journal of Earth Sciences 45, 231-241 (2008).

  57. Schindel, D.E., Vermeij, G.J. & Zipser, E. Frequencies of repaired shell fractures among the Pennsylvanian gastropods of north central Texas. Journal of Paleontology 56, 729-740 (1982).

  58. Kowalewski, M., Dulai, A. & Fürsich, F.T. A fossil record full of holes: The Phanerozoic history of drilling predation. Geology 26, 1091-1094 (1998).

  59. Scotese, C.R. PaleomapProject. http://www.scotese.com/earth.htm. Consultado junio 2014. (2010).



>Revistas >TIP Revista Especializada en Ciencias Químico-Biológicas >Año2015, No. 1
 

· Indice de Publicaciones 
· ligas de Interes 






       
Derechos Resevados 2019