Entrar/Registro  
INICIO ENGLISH
 
Gaceta Médica de México
   
MENÚ

Contenido por año, Vol. y Num.

Índice de este artículo

Información General

Instrucciones para Autores

Mensajes al Editor

Directorio






>Revistas >Gaceta Médica de México >Año 2015, No. 4


Chacón-Camacho ÓF, Astorga-Carballo A, Zenteno JC
Terapia génica para enfermedades hereditarias oftalmológicas: avances y perspectivas
Gac Med Mex 2015; 151 (4)

Idioma: Español
Referencias bibliográficas: 86
Paginas: 501-511
Archivo PDF: 316.78 Kb.


Texto completo




RESUMEN

La terapia génica es una estrategia terapéutica novedosa y prometedora que podría proporcionar una forma más efectiva para tratar las enfermedades. El ojo es un órgano fácilmente accesible, altamente compartimentado y con privilegio inmunológico, los cuales proporcionan la ventaja para que sea un blanco terapéutico ideal. Recientemente se han descrito avances importantes en la disponibilidad de diversas vías intraoculares para la liberación de los vectores virales, así como la capacidad de éstos para transducir algunos tipos de células oculares específicas. La terapia génica ha avanzado en algunas distrofias retinianas; de esta forma, se ha reportado actualmente un éxito preliminar para el tratamiento de la amaurosis congénita de Leber (LCA). Esta revisión describirá una actualización en el área de la terapia génica para el tratamiento de las enfermedades hereditarias oftalmológicas.


Palabras clave: Terapia génica, Vector viral, Terapia génica ocular, Distrofia retiniana, Amaurosis congénita de Leber.


REFERENCIAS

  1. Chung DC, Lee V, Maguire AM. Recent advances in ocular gene therapy. Curr Opin Ophthalmol. 2009;20:377-81.

  2. Demetriades AM. Gene therapy for glaucoma. Curr Opin Ophthalmol. 2011;22:73-7.

  3. Colella P, Cotugno G, Auricchio A. Ocular gene therapy: current progress and future prospects. Trends Mol Med. 2009;15:23-31.

  4. Mohan RR, Tovey JCK, Sharma A. Gene therapy in the cornea: 2005-present. ProgRetin Eye Res. 2012;31:43-64.

  5. Liu MM, Tao J, Chan C. Gene therapy for ocular diseases. Br J Ophthalmol. 2011;95:604-12.

  6. Sahni JN, Angi M, Irigoyen C, et al. Therapeutic Challenges to Retinitis Pigmentosa: From Neuroprotection to Gene Therapy. Curr Genomics. 2011;12:276-84.

  7. Stein L, Roy K, Kaushal S. Clinical gene therapy for the treatment of RPE65-associated Leber congenital amaurosis. Expert Opin Biol Ther. 2011;11:429-39.c

  8. Alexander JJ, Umino Y, Everhart D, et al. Restoration of cone vision in a mouse model of achromatopsia. Nat Med. 2007;13:686-7.

  9. Kong J, Kim SR, Binley K, et al. Correction of the disease phenotype in the mouse model of Stargardt disease by lentiviral gene therapy. Gene Ther. 2008;15:1311-20.

  10. DiPolo A, Aigner LJ, Dunn RJ, et al. Prolonged delivery of brain-derived neurotropic factor by adenovirus-infected Müller cells temporarily rescues injured retinal ganglion cells. Proc Natl Acad Sci. USA. 1998; 95:3978-83.

  11. Johnson EC, Guo Y, Cepurna WO, et al. Neurotrophin roles in retinal ganglion cell survival: lessons from rat glaucoma models. Exp Eye Res. 2009;88:808-15.

  12. Barraza RA, Rasmussen CA, Lowen N, et al. Prolonged transgene expression with lentiviral vectors in the aqueous humor outflow pathway in nonhuman primates. Hum Gene Ther. 2009;20:191-200.

  13. Barraza RA, McLaren JW, Poeschla EM. Prostaglandin pathway gene therapy for sustained reduction of intraocular pressure. Mol Ther. 2010;18:491-501.

  14. Spiga MG, Borrás T. Development of a gene therapy virus with a glucocorticoid- inducible MMP1 for the treatment of steroid glaucoma. Invest Ophthalmol Vis Sci. 2010;51:63029-41.

  15. Saishin Y, Silva RL, Saishin Y, et al. Periocular gene transfer of pigment epithelium-derived factor inhibits choroidal neovascularization in a human- sized eye. Hum Gene Ther. 2005;16:473-8.

  16. O´Reilly M, Palfi A, Chadderton N, et al. RNA interference mediated suppression and replacement of human rhodopsin in vivo. Am J Hum Genet. 2007;81:127-35.

  17. Reich SJ, Fosnot J, Kuroki A, et al. Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model. Mol Vis. 2003;9:210-16.

  18. Murata M, Takanami T, Shimizu S, et al. Inhibition of ocular angiogenesis by diced small interfering RNAs (siRNAs) specific to vascular endothelial growth factor (VEGF). Curr Eye Res. 2006;31:171-80.

  19. Lewin AS, Drenser KA, Hauswirth WW, et al. Ribozyme rescue of photoreceptor cells in a transgenic rat model of autosomal dominant retinitis pigmentosa. Nat Med. 1998;4:961-71.

  20. Law LY, Zhang WV, Stott NS, et al. In vitro optimization of antisense oligodeoxynucleotide design: an example using the connexin gene family. J Biomol Tech. 2006;17:270-82.

  21. Chang CY, Laux-Fenton WT, Law LY, et al. Antisense down regulation of connexin 31.1 reduces apoptosis and increases thickness of human and animal corneal epithelia. Cell Biol Int. 2009;33:376-85.

  22. Kim B, Tang Q, Biswas PS, et al. Inhibition of ocular angiogenesis by siRNA targeting vascular endothelial growth factor pathway genes: therapeutic strategy for herpetic keratitis. Am J Pathol. 2004;165:2177-85.

  23. Strachan T, Read A. Genetic approaches to treating diseases. En Human Molecular Genetics. Strachan T, Read A (Eds). Garland Science. 4a. ed. New York; 2011, pp 677-704.

  24. Sullivan JM, Pietras KM, Shin BJ, et al. Hammerhead ribozymes designed to cleave all human rodopsin mRNAs wich cause autosomal dominant retinitis pigmentosa. Mol Vis. 2002;8:102-13.

  25. Spoerri PE, Afzal A, Li Calzi S, et al. Effects of VEGFR-1, VEGFR-2, and IGF-IR hammerhead ribozymes on glucose-mediated tight junction expression in cultured human retinal endothelial cells. Mol Vis. 2006;12:32-42.

  26. Burney TJ, Davies JC. Gene therapy for the treatment of cystic fibrosis. Appl Clin Genet. 2012;5:29-36.

  27. Flotte TR, Trapnell BC, Humphies M, et al. Phase 2 clinical trial of a recombinant adeno-associated viral vector expressing a-1-antitrypsin: interim results. Hum Gene Ther. 2011;22:1239-47.

  28. Jarmin S, Kymalainen H, Popplewell L, et al. New developments in the use of gene therapy to treat Duchenne muscular dystrophy. Expert Opin Biol Ther. 2014;14:209-30.

  29. Worgall S, Sondhi D, Hackett NR, et al. Treatment of late infantile neuronal ceroid lipofuscinosis by CNS administration of a serotype 2 adeno- associated virus expressing CLN2 cDNA. Hum Gene Ther. 2008; 19:463-74.

  30. Bactus RT, Baumann TL, Brown L, et al. Advancing neurotrophic factors as treatments for age-related neurodegenerative diseases: developing and demonstrating clinical proof-of-concept for AAV-neurturin (CERE 120) in Parkinson´s disease. Neurobiol Aging. 2013;34:35-61.

  31. Zhong L, Jayandharan GR, Aslanidi GV, et al. Development of novel recombinant AAV vectors and strategies for the potential gene therapy of hemophilia. J Genet Syndr Gene Ther. 2012;S1.

  32. Maguire AM, High KA, Auricchio A, et al. Age-dependent effects of RPE65 gene therapy for Leber´s congenital amaurosis: a phase 1 dose-escalation trial. Lancet. 2009;374:1597-605.

  33. Allocca M, Tessitore A, Cotugno G, et al. AAV mediated gene transfer for retinal diseases. Expert Opin Biol Ther. 2006;6:1279-94.

  34. Vandenberghe LH, Auricchio A. Novel adeno-associated viral vector for retinal gene therapy. Gene Ther. 2012;19:162-8.

  35. Allocca M, Doria M, Petrillo M, et al. Serotype-dependent packaging of large genes in adeno-associated viral vectors results in effective gene delivery in mice. J Clin Invest. 2008;118:1955-64.

  36. Tan MH, Smith AJ, Pawlyk B, et al. Gene therapy for retinitis pigmentosa and Leber congenital amaurosis caused by defects in AIPL1: effective rescue of mouse models of partial and complete Aipl1 deficiency using AAV2/2 and AAV2/8 vectors. Hum Mol Genet. 2009;18:2099-114.

  37. Bartel MA, Weinstein JR, Schaffer DV. Directed evolution of novel adeno- associated viruses for therapeutic gene delivery. Gene Ther. 2012; 19:694-700.

  38. Ali RR, Reichel MB, Thrasher AJ, et al. Gene transfer into the mouse retina mediated by an adeno-associated viral vector. Hum Mol Genet. 1996;5:591-4.

  39. Ali RR, Reichel MB, De Alwis M, et al. Adeno-associated virus gene transfer to mouse retina. Hum Gene Ther. 1998;9:81-6.

  40. Bennet J, Duan D, Engelhardt, et al. Real-time, noninvasive in vivo assessment of adeno-associated virus mediated retinal transduction. Invest Ophthalmol Vis Sci. 1997;38:2857-63.

  41. Le Meur G, Weber M, Péréon Y, et al. Postsurgical assessment and long-term safety of recombinant adeno-associated virus-mediated gene transfer into the retinas of dogs and primates. Arch Ophthalmol. 2005;123:500-6.

  42. Allocca M, Mussolino C, García-Hoyos M, et al. Novel adeno-associated virus serotypes efficiently transduce murine photoreceptors. J Virol. 2007;81:11372-80.

  43. Chévez-Barrios P, Chintagumpala M, Mieler W, et al. Response of retinoblastoma with vitreous tumor seeding to adenovirus-mediated delivery of thymidine kinase followed by ganciclovir. J Clin Oncol. 2005;23:7927-35.

  44. Lamartina S, Cimino M, Roscilli G, et al. Helper-dependent adenovirus for the gene therapy of proliferative retinopathies: stable gene transfer, regulated gene expression and therapeutic efficacy. J Gene Med. 2007;9:862-74.

  45. Retinal Information Network (Homepage en Internet). Texas: The University of Texas-Houston Health Science Center c2013 (actualizada el 8 de diciembre de 2014; consultado el 15 de diciembre de2014). Disponible en: https://sph.uth.edu/retnet.

  46. Smith AJ, Bainbridge JWB, Ali RR. Gene supplementation therapy for recessive forms of inherited retinal dystrophies. Gene Ther. 2012:19:154-61.

  47. Ali RR, Sarra GM, Stephens C, et al. Restoration of photoreceptor ultrastructure and function in retinal degeneration slow mice by gene therapy. Nat Genet. 2000;25:306-10.

  48. Sarra GM, Stephens C, De Alwis M, et al. Gene replacement therapy in the retinal degeneration slow (rds) mouse: the effect on retinal degeneration following partial transduction of the retina. Hum Mol Genet. 2001;10:2353-61.

  49. Veske A, Nilsson SE, Narfstrom K, et al. Retinal dystrophy of Swedish briard/briard-beagle dogs is due to a 4-bp deletion in RPE65. Genomics. 1999;57:57-61.

  50. Acland GM, Aguirre GD, Ray J, et al. Gene therapy restores vision in a canine model of childhood blindness. Nat Genet. 2001;28:92-5.

  51. Acland GM, Aguirre GD, Bennet J, et al. Long term restoration of rod and cone vision by single dose rAVV-mediated gene transfer to the retina in a canine model of childhood blindness. Mol Ther. 2005;12: 1072-82.

  52. Hufnagel RB, Ahmed ZM, Corrêa ZM, et al. Gene therapy for Leber congenital amaurosis: advances and future directions. Graefes Arch Exp Ophthalmol. 2012;250:1117-28.

  53. Koenekoop RK. An overview of Leber congenital amaurosis: a model to understand human retinal development. Surv Ophthalmol. 2004;49: 379-98.

  54. Al-Khayer K, Hagstrom S, Pauer G, et al. Thirty-year follow-up of a patient with Leber congenital amaurosis and novel RPE65 mutations. Am J Ophthalmol. 2004;137:375-7.

  55. Traboulsi EI. The Marshall M. Park memorial lecture: making sense of early-onset childhood retinal dystrophies-the clinical phenotype of Leber congenital amaurosis. Br J Ophthalmol. 2010;94:1281-7.

  56. Maguire AM, Simonelli F, Pierre EA, et al. Safety and efficacy of gene transfer for Leber´s congenital amaurosis. N Engl J Med. 2008;358: 2240-8.

  57. Bainbridge JW, Smith AJ, Barker SS, et al. Effect of gene therapy on visual function in Leber´s congenital amaurosis. N Engl J Med. 2008; 358:2231-9.

  58. Hauswirth W, Aleman TS, Kaushal S, et al. Phase I trial of Leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short terms results. Hum Gene Ther. 2008;19:979-90.

  59. Simonelli F, Maguire AM, Testa F, et al. Gene therapy for Leber´s congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol Ther. 2010;18:643-50.

  60. Testa F, Maguire AM, Rossi S, et al. Three-Year Follow-up after Unilateral Subretinal Delivery of Adeno-Associated Virus in Patients with Leber Congenital Amaurosis Type 2. Ophthalmol. 2013;120:1263-91.

  61. Westerfeld C, Mukai S. Stargardt´s disease and the ABCR gene. Sem Ophthalmol. 2008;23:59-65.

  62. Weng J, Mata NL, Azarian SM, et al. Insights into the function of Rim protein in photoreceptors and etiology of Stargardt´s disease from the phenotype in abcr knockout mice. Cell. 1999;98:13-23.

  63. Binley K, Widdowson P, Loader J, et al. Transduction of photoreceptors with equine infectious anemia virus lentiviral vectors: safety and biodistribution of StarGen for Stargardt disease. Invest Ophthalmol Vis Sci. 2013;54:4061-71.

  64. Han Z, Conley SM, Naash MI. Gene therapy for Stargardt disease associated with ABCA4 gene. Adv Exp Med Biol. 2014;801:719-24.

  65. Coussa RG, Traboulsi EI. Choroideremia: a review of general findings and pathogenesis. Ophthalmic Genet. 2012;33:57-65.

  66. Roberts MF, Fishman GA, Roberts DK, et al. Retrospective, longitudinal, and cross sectional study of visual acuity impairment in choroideremia. Br J Ophthalmol. 2002;86:658-62.

  67. McLaren RE, Groppe M, Barnard AR, et al. Retinal gene therapy in patients with choroideremia: initial findings from a phase ½ clinical trial. Lancet. 2014;383:1129-37.

  68. Boye SE, Boye SL, Lewin AS, et al. A comprehensive review of retinal gene therapy. Mol Ther. 2013;21:509-19.

  69. Tschernutter M, Schlichtenbrede FC, Howe S, et al. Long-term preservation of retinal function in the RCS rat model of retinitis pigmentosa following lentivirus-mediated gene therapy. Gene Ther. 2005;12:694-701.

  70. Buch PK, MacLaren RE, Durán Y, et al. In contrast to AAV-mediated Cntf expression, AAV-mediated Gdnf expression enhances gene replacement therapy in rodent models of retinal degeneration. Mol Ther. 2006;14:700-9.

  71. Deng WT, Dinculescu A, Li Q, et al. Tyrosine-mutant AAV8 delivery of human MERTK provides long-term retinal preservation in RCS rats. Invest Ophthalmol Vis Sci. 2012;53:1895-904.

  72. Conlon TJ, Deng WT, Erger K, et al. Preclinical potency and safety studies of an AAV2-mediated gene therapy vector for the treatment of MERTK associated retinitis pigmentosa. Hum Gene Ther Clin Dev. 2013;24:23-8.

  73. Bonnet C, El-Amraoui A. Usher syndrome (sensorineural deafness and retinitis pigmentosa): pathogenesis, molecular diagnosis and therapeutic approaches. Curr Opin Neurol. 2012;25:42-9.

  74. Hashimoto T, Gibbs D, Lillo C, et al. Lentiviral gene replacement therapy of retinas in a mouse model for Usher syndrome type 1B. Gene Ther. 2007;14:584-94.

  75. Zallocchi M, Binley K, Lad Y, et al. EIAV-based retinal gene therapy in the shaker 1 mouse model for Usher syndrome type 1B: development of UshStat. PLoS One. 2014;9:e94272.

  76. Ratnapriya R, Chew EY. Age-related macular degeneration-clinical review and genetics update. Clin Genet. 2013;84:160-6.

  77. Lai CM, Shen WY, Brankov M, et al. Long-term evaluation of AAV-mediated sFtl-1 gene therapy for ocular neovascularization in mice and monkeys. Mol Ther. 2005;12:659-68.

  78. Lai CM, Estcourt MJ, Himbeck RP, et al. Preclinical safety evaluation of subretinal AAV2.sFtl-1 in non-human primates. Gene Ther. 2012;19: 999-1009.

  79. Pechan P, Rubin H, Lukason M, et al. Novel anti-VEGF chimeric molecules delivered by AAV vectors for inhibition of retinal neovascularization. Gene Ther. 2009;16:10-6.

  80. Maclachlan TK, Lukason M, Collins M, et al. Preclinical safety evaluation of AAV2-sFLT01-a gene therapy for age-related macular degeneration. Mol Ther. 2011;19:326-34.

  81. Ayala-Ramírez R, Graue-Wiechers F, Robredo V, et al. A new autosomal recessive syndrome consisting of posterior microphthalmos, retinitis pigmentosa, foveoschisis, and optic disc drusen is caused by a MFRP gene mutation. Mol Vis. 2006;12:1483-9.

  82. Crespí J, Buil JA, Bassaganyas F, et al. A novel mutation confirms MFRP as the gene causing the syndrome of nanophthalmos-retinitis pigmentosa- foveoschisis-optic disk drusen. Am J Ophthalmol. 2008;146:323-8.

  83. Zenteno JC, Buentello-Volante B, Quiroz-González MA, et al. Compound heterozygosity for a novel and recurrent MFRP gene mutation in a family with the nanophthalmos-retinitis pigmentosa complex. Mol Vis. 2009;15:1794-8.

  84. Won J, Smith RS, Peachey NS, et al. Membrane frizzled-related protein is necessary for the normal development and maintenance of photoreceptor outer segments. Vis Neurosci. 2008;25:563-74.

  85. Dinculescu A, Estreicher J, Zenteno JC, et al. Gene therapy for retinitis pigmentosa caused by MFRP mutations: human phenotype and preliminary proof of concept. Hum Gene Ther. 2012;23:367-76.

  86. Dinculescu A, Min SH, Deng WT, et al. Gene therapy in the rd6 mouse model of retinal degeneration. Adv Exp Med Biol. 2014;801:711-18.



>Revistas >Gaceta Médica de México >Año2015, No. 4
 

· Indice de Publicaciones 
· ligas de Interes 






       
Derechos Resevados 2019