medigraphic.com
ENGLISH

Cirugía y Cirujanos

  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2003, Número 3

<< Anterior

Cir Cir 2003; 71 (3)


Inmunidad innata, receptores Toll y sepsis

Carrillo-Esper R
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 89
Paginas: 252-258
Archivo PDF: 109.35 Kb.


PALABRAS CLAVE

Respuesta inmune innata, receptores Toll, receptores semejantes a Toll, sepsis, choque séptico, disregulación de respuesta inmune innata.

RESUMEN

La respuesta inmune innata es la primera línea de defensa contra la infección. Los receptores semejantes a Toll (TLRs: Toll-like receptors) reconocen al lipopolisacárido bacteriano y otros patrones moleculares asociados a patógenos (PAPMs: Pathogen Associated Molecular Patterns). Los eventos moleculares intracelulares iniciados por la interacción entre TLRs y su PAPMs específicos desencadenan respuesta inflamatoria sistémica. La sepsis y el choque séptico son el resultado de una respuesta inflamatoria exagerada secundaria a disregulación de la inmunidad innata.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Society of Critical Care Medicine Consensus Conference Committee. American Conference: definitions for sepsis and organ failure and guidelines of the use of innovative therapies in sepsis. Crit Care Med 1992;20:864-874.

  2. Bone RC. The sepsis syndrome: definition and general approach to management. Clin Chest Med 1996;17:75-82.

  3. 3 Abraham E, Matthay MA, Dinarello CA, et al. Consensus conference definitions for sepsis, septic shock, acute lung injury, and acute respiratory distress syndrome: time for a reevaluation. Crit Care Med 2000;28:232-235.

  4. Janeway CA Jr. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today 1992;13:11-16.

  5. Medzhitov R, Janeway C Jr. Innate immunity. N Engl J Med 2000;343:338-344.

  6. Fearon DT, Locksley RM. The instructive role of innate immunity in the acquired immune response. Science 1996;272:50-53.

  7. Beutler B, Poltorak A. Sepsis and evolution of the innate immune response. Crit Care Med 2000;29:S2-S7.

  8. Janeway JCA, Medzhitov R. Introduction: the role of innate immunity in the adaptive innate response. Semin Immunol 1998;10:349-350.

  9. Lien E, Ingalls RR. Toll-like receptors. Crit Care Med 2002;30:S1-S11.

  10. Anderson KV, Jurgens G, Nusslein-Volhard C. Establishment of dorsal-ventral polarity in the Drosophila embryo: genetic studies on the role of the Toll gene product. Cell 1985;42:791-798.

  11. Anderson KV, Bokla L, Nusslein-Volhard C. Establishment of dorsal-ventral polarity in the Drosophila embryo: the induction of polarity by the Toll gene product. Cell 1985;42:791-798.

  12. Lemaitre B, Nicolas E, Michaut L, et al. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996; 86:973-983.

  13. Tauszig S, Jouanguy E, Hoffmann JUA, et al. Toll-related receptors and the control of antimicrobial peptide expression in Drosophila. Proc Natl Acad Sci USA 2000;97:10520-10525.

  14. Williams MJ, Rodríguez A, Kimbrell DA, et al. The 18-wheeler mutation reveals complex antibacterial gene regulation in Drosophila host defense. Embo J 1997;16:6120-6130.

  15. Gay NJ, Keith FJ. Drosophila Toll and IL-1 receptor. Nature 1992:351:355-356.

  16. DeLotto Y, DeLotto R. Proteolytic processing of the Drosophila Spatzle protein by easter generates a dimeric NGF-like molecule with ventralising activity. Mech Dev 1998;72:141-148.

  17. Edwards DN, Towb P, Wassermann SA. An activity-dependent network of interactions links the Rel protein dorsal with its cytoplasmic regulators. Development 1997;124:3855-3864.

  18. LeMosy EK, Hong CC, Hashimoto C. Signal transduction by a protease cascade. Trends Cell Biol 1999;9:102-107.

  19. Geisler R, Bergmann A, Hiromi Y, et al. Cactus, a gene involved in dorsoventral pattern formation of Drosophila, is related to the 1 kappa B gene family of vertebrates. Cell 1992; 71:613-621.

  20. Kidd S. Characterization of the Drosophila cactus locus and analysis of interactions between cactus and dorsal proteins. Cell 1992;71:623-635.

  21. Taguchi T, Mitchman JL, Dower SK, et al. Chromosomal localization of TIL, a gene enconding a protein related to the Drosophila transmembrance receptor Toll, to human chromosome 4p14. Genomics 1996;32:486-488.

  22. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997;388:394-397.

  23. Rock FL, Hardiman G, Timans JC, et al. A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci USA 1998;95:588-593.

  24. Takeuchi O, Kawai T, Sanjo H, et al. TLR6: a novel member of an expanding Toll-like receptor family. Gene 1999;231:59-65.

  25. Muzio M, Polentarutti N, Bosisio D, et al. Toll-like receptor family and signalling pathway. Biochem Soc Trans 2000;28:563-566.

  26. Brightbill HD, Libraty DH, Krutzik SR, et al. Host defense mechanisms triggered by microbial lipoproteins through Toll-like receptors. Science 1999;285:732-736.

  27. Schwander R, Dziarski R, Wesche H, et al. Peptidoglycan and lipoteichoic acid induced cell activation is mediated by Toll-like receptor 2. J Biol Chem 1999;274:17406-17409.

  28. Alexopoulou L, Holt AC, Medzhitov R, et al. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 2001;413:732-738.

  29. Hayashi F, Smith KD, Ozinsky A, et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001;410:1099-1103.

  30. Takeuchi O, Hosmino K, Kawai T, et al. Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components. Immunity 1999;11:443-451.

  31. Bauer S, Kirschning CJ, Hacker H, et al. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci USA 2001;98:9237-9242.

  32. Wright SD, Ramos RA, Tobias PS, et al. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 1990;249:1431-1433.

  33. Haziot AA, Chen S, Ferrero E, et al. The monocyte differentiation antigen, CD14, is anchored to the cell membrane by a phosphatidylinositol linkage. J Immunol 1988;141:547-552.

  34. Ziegler-Heitbrock HW, Ulevitch RJ. CD14: cell surface receptor and differentiation marker. Immunol Today 1993;14:121-125.

  35. Frey EA, Miller DS, Jahr TG, et al. Soluble CD14 participates in the response of cells to lipopolysaccharide. J Exp Med 1992;196:1665-1671.

  36. Wright SD, Levin SM, Jong MT, et al. CR3 (CD11b/CD18) expresses one binding site for Arg-Gly-Asp-containing peptides and a second site for bacterial lipopolysaccharide. J Exp Med 1989; 169:175-183.

  37. Ingalls RR, Golenbock DT. CD11c/CD18, a transmembrane signaling receptor for lipopolysaccharide. J Exp Med 1995;181:1473-1479.

  38. Perera PY, Mayadas TN, Takeuchi O, et al. CD11b/CD18 acts in concert with CD14 and toll-like receptor (TLR) 4 to elicit full lipopolysaccharide and taxol-inducible gene expression. J Immunol 2001;166:574-581.

  39. Shimazu R, Akashi S, Ogata H, et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 1999;189:1777-1782.

  40. Schromm AB, Lien E, Henneke P, et al. Molecular genetic analysis of an endotoxin nonresponder mutant cell line: a point mutation in a conserved region of MD-2 abolishes endotoxin induced signaling. J Exp Med 2001;194:79-88.

  41. Hotchkiss R, Karl IE. The pathophysiology and treatment of sepsis. New Engl J Med 2003;348:138-150.

  42. Marik PE, Varon J. Sepsis: state of the art. Disease-a-Month 2001;47:463-530.

  43. Oberholzer A, Oberholzer C, Moldawer LL. Cytokine signaling-regulation of the immune response in normal and critically ill states. Crit Care Med 2000;28(Suppl):N3-N12.

  44. Modlin RL, Brightbill HD, Godowski PJ. The Toll of innate immunity on microbial pathogens. N Engl J Med 1999;340:1834-1835.

  45. Vasselon T, Detmers PA. Toll receptors: a central element in innate immune responses. Infect Immun 2002;70:1033-1041.

  46. Underhill DM, Ozinsky A. Toll-like receptors: key mediators of microbe detection. Curr Opin Immunol 2002;14:103-110.

  47. Oberholzer A, Oberholzer C, Moldawer LL. Sepsis syndromes: understanding the role of innate and acquired immunity. Shock 2001;16:83-96.

  48. Chuang T, Ulevitch RJ. Identification of hTLR10: a novel human Toll-like receptor preferentially expressed in immune cells. Biochim Biophys Acta 2001:1518:157-161.

  49. Kaisho Tsuneyasu, Akira S. Toll-like receptors and their signaling mechanism in innate immunity. Acta Odontol Scand 2001;59:124-130.

  50. Aliprantis AO, Yang R-B, et al. The apoptotic signaling pathway activated by Toll-like receptor 2. EMBO 2000;3:3325-3336.

  51. Hotchkiss RS, Swanson PE, Freeman BD, et al. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit Care Med 1999;27:1230-1251.

  52. Hotchkiss RS, Tinsley KW, Swanson PE, et al. Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans. J Immunol 2001;166:6952-6963.

  53. Seki E, Tsutsui H, Nakano H, et al. Lipopolysaccharide-induced IL-18 secretion from murine Kupffer cells independently of myeloid differentiation facgtor 88 that is critically involved in induction of production of IL-12 and IL-1 beta. J Immunol 2001;166:2651-2657.

  54. Arbibe L, Mira JP, Teusch N, et al. Toll-like receptor 2-mediated NF-kappa B activation requires a Rac1-dependent pathway. Nat Immunol 2000;1:533-540.

  55. Papavassiliou AG. Transcription factors. N Engl J Med 1995;332:45-47.

  56. Kuno K, Matsushima K. The IL-1 receptor signaling pathway. Leukoc Biol 1994;56:242-246.

  57. Carrillo ER. Modulación genética de la respuesta inflamatoria sistémica en sepsis. Rev Asoc Mex Med Crit Ter Int 2001;15:92-95.

  58. Baeuerle P, Baltimore D. NF-kB: ten years after. Cell 1996;87:13-20.

  59. Baeuerle P, Baltimore D. IkB: a specific inhibitor of the NF-kB transcription factor. Science 1998:540-545.

  60. Kopp EB, Ghosh S. NF-kB and Rel proteins in innate immunity. Adv Immunol 1995; 58:1-27

  61. Bohrer H, Qiu F, Zimmermann T. Role of NF-kB in the mortality of sepsis. J Clin Invest 1997;100:972-985.

  62. Stuber F. Effects of genomic polymorphisms on the course of sepsis: is there a concept for gene therapy? Am Soc Nephrol 2001;(Suppl 17):S60-S64.12.

  63. Carrillo ER, Núñez FN. Systemic inflammatory response syndrome: new concepts. Gac Med Mex 2001;137:127-134.

  64. Haziot A, Ferrero E, Kontgen F, et al. Resistance to endotoxin shock and reduced dissemination of Gram-negative bacteria in CD14-deficient mice. Immunity 1996;407:4.

  65. Haziot A, Ferrero E, Lin XY, et al. CD-14 deficient mice are exquisitely insensitive to the effects of LPS. Prog Clin Biol Res 1995;392:349.

  66. Haziot A, Lin XY, Zhang F, et al. The induction of acute phase proteins by lipopolysaccharide uses a novel pathway that is CD14-independent. J Immunol 1998;160:2570.

  67. Ingalls RR, Arnaout MA, Golenbock DT. Outside-in signaling by lipopolysaccharide through a tailless integrin. J Immunol 1997;159:433.

  68. Lorenz E, Mira JP, Cornish KL, et al. A novel polymorphism in the Toll-like receptor 2 gene and its potential association with staphylococcal infection. Infect Immun 2000;68:6398-6401.

  69. Qureshi ST, Lariviere L, Leveque G, et al. Entodotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J Exp Med 1999;189:615-625.

  70. Greisman SE, Young EJ, Carozza FA Jr. Mechanisms of endotoxin tolerance: V. Specificity of the early and late phases of pyrogenic tolerance. J Immunol 1969;103:1123-1236.

  71. Milner KC. Patterns of endotoxin tolerance. J Infect Dis 1973;128(Suppl): 237-245.

  72. Greisman SE, Hornick RB. Mechanisms of endotoxin tolerance with special reference to man. J Infect Dis 1973;128(Suppl):265-276.

  73. West MA, Heagy W, Nieman K, et al. Signal transduction alterations in macrophage endotoxin tolerance: abnormal protein kinase C-zeta activation. J Endo Res 2000;6:134.

  74. Nomura F, Akashi S, Sakao Y, et al. Cutting edge: endotoxin tolerance in luse peritoneal macrophages correlates with down-regulation of surface Toll-like receptor 4 expression. J Immunol 2000;164:3476-3479.

  75. Yoza B, LaRue K, McCall C. Molecular mechanisms responsible for endotoxin tolerance. Prog Clin Biol Res 1998;397:209-215.

  76. Cook JA. Molecular basis of endotoxin tolerance. Ann N Y Acad Sci 1998;851:426-428.

  77. Seatter SC, Bennet T, Li MH, et al. Macrophage endotoxin tolerance: tumor necrosis factor and interleukin-1 regulation by lipopolysaccharide pretreatment. Arch Surg 1994;129:1263-1270.

  78. Kraatz J, Clair L, Rodríguez JL, et al. Macrophage TNF secretion in endotoxin tolerance: role of SAPK, p38, and MAPK. J Surg Res 1999;83:158-164.

  79. Sun S-C, Ganchi PA, Ballard DW, et al. NF-kB controls expression of inhibitor IkBa: evidence for an inducible autoregulatory pathway. Science 1993;259:1912-1915.

  80. Cain BS, Tung TC. Endotoxin cross tolerance: another inflammatory preconditioning stimulus? Crit Care Med 2000;28:2164-2165.

  81. Shahbazian LM, Jeevanandam M, Petersen SR. Release of proinflammatory cytokines by mitogen-stimulated peripheral blood mononuclear cells from critically ill multiple-trauma victims. Metabolism 1999;48:1397-1401.

  82. Flach R, Majetschak M, Heukamp T, et al. Relation of ex vivo stimulated blood cytokine synthesis to post-traumatic sepsis. Cytokine 1999;11:173-178.

  83. Haupt W, Fritzsche H, Hohenberger W, et al. Selective cytokine release induced by serum and separated plasma from septic patients. Eur J Surg 1996;162:769-776.

  84. Majetschak M, Flach R, Heukamp T, et al. Regulation of whole blood tumor necrosis factor production upon endotoxin stimulation after severe blunt trauma. J Trauma 1997;43:880-887.

  85. Fabian TC, Croce MA, Fabian MJ, et al. Reduced tumor necrosis factor production in endotoxin-spiked whole blood after trauma: experimental results and clinical correlation. Surgery 1995;118:63-72.

  86. Keel M, Schregenberger N, Steckholzer U, et al. Endotoxin tolerance after severe injury and its regulatory mechanisms. J Trauma 1996;41:430-438.

  87. Ziegler-Heribrock HWL. Molecular mechanism in tolerance to lipopolysaccharide. J Inflamm 1995;45:13-26.

  88. Kohler NG, Joly A. The involvement of an LPS inducible I kappa B kinase in endotoxin tolerance. Biochem Biophys Res Commun 1997;232:602-607.

  89. Shames BD, Meldrum DR, Selzman CH, et al. Increased levels of myocardial I kappa B-alpha protein promote tolerance to endotoxin. Am J Physiol 1998;275:H1084-H1091.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Cir Cir. 2003;71

ARTíCULOS SIMILARES

CARGANDO ...