medigraphic.com
ENGLISH

Revista de Investigación Clínica

Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2016, Número 1

<< Anterior

Rev Invest Clin 2016; 68 (1)


The Role of Neuroinflammation in Age-Related Dementias

López-Valdés HE, Martínez-Coria H
Texto completo Cómo citar este artículo

Idioma: Ingles.
Referencias bibliográficas: 117
Paginas: 40-48
Archivo PDF: 194.58 Kb.


PALABRAS CLAVE

Sin palabras Clave

RESUMEN

Sin resumen.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Minghetti L. Role of inflammation in neurodegenerative diseases. Curr Opin Neurol. 2005;18:315-21.

  2. Actor JK. A Functional Overview of the Immune System and Immune Components. In: Actor JK (ed.) Introductory Immunology: Basic Concepts for Interdisciplinary Applications. London, UK: Academic Press; 2014. p. 1-15.

  3. Licastro F, Candore G, Lio D, et al. Innate immunity and inflammation in ageing: a key for understanding age-related diseases. Immun Ageing. 2005;18:2:8.

  4. Shastri A, Bonifati DM, Kishore U. Innate immunity and neuroinflammation. Mediators Inflamm. 2013;2013:342931.

  5. Bernardino L, Malva JO. Inflammation and neuronal susceptibility to excitotoxic cell death. In: Malva JO, (ed.) Interaction between Neurons and Glia in Aging and Disease. Boston, MA, USA: Springer; 2007. p. 3-36.

  6. Moore CS, Durafourt BA, Antel JP. Innate immunity in the CNS – a focus on the myeloid cell. In: Woodroofe N, Amor S (eds.) Neuroinflammation and CNS Disorders. West Sussex, UK: John Wiley & Sons, LTD; 2014. p. 9-35.

  7. Wood P. The immediate response to infection: innate immunity and the inflammatory response. In: Wood P (ed.) Understanding Immunology. 3rd ed. Harlow, England: Pearson; 2011. p. 22-48.

  8. Broux B, Gowing E, Prat A. Glial regulation of the blood-brain barrier in health and disease. Semin Immunopathol. 2015;37: 577-90.

  9. Lampron A, Elali A, Rivest S. Innate immunity in the CNS: redefining the relationship between the CNS and its environment. Neuron. 2013;78:214-32.

  10. Alvarez JI, Dodelet-Devillers A, Kebir H, et al. The Hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science. 2011;334:1727-31.

  11. Creagh EM, O’Neill LA. TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol. 2006;27:352-7.

  12. Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol. 2009;27:519-50.

  13. Etienne-Manneville S, Manneville JB, Adamson P, et al. ICAM- 1-coupled cytoskeletal rearrangements and transendothelial lymphocyte migration involve intracellular calcium signaling in brain endothelial cell lines. J Immunol. 2000;165:3375-83.

  14. Nagyoszi P, Wilhelm I, Farkas AE, et al. Expression and regulation of toll-like receptors in cerebral endothelial cells. Neurochem Int. 2010;57:556-64.

  15. Hellström M, Gerhardt H, Kalén M, et al. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol. 2001;153:543-53.

  16. Graeber MB, Streit WJ, Kiefer R, et al. New expression of myelomonocytic antigens by microglia and perivascular cells following lethal motor neuron injury. J Neuroimmunol. 1990;27: 121-32.

  17. Kovac A, Erickson MA, Banks WA. Brain microvascular pericytes are immunoactive in culture: cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysaccharide. J Neuroinflammation. 2011;8:139.

  18. Cartier N, Lewis C-A, Zhang R, et al. The role of microglia in human disease: therapeutic tool or target? Acta Neuropathol (Berl). 2014;128:363-80.

  19. Chen Z, Trapp BD. Microglia and neuroprotection. J Neurochem. 2015. [Epub ahead of print].

  20. Noda M, Verkhratsky A. physiology of microglia. In: Kettenmann H, Ransom BR, (eds.) Neuroglia. 3rd ed. New York, NY, USA: Oxford University Press; 2013. p. 223-37.

  21. Verkhratsky A, Butt AM. Microglia. In: Verkhratsky A, Butt AM, (eds.) Glial Physiology and Pathophysiology. West Sussex, UK: John Wiley & Sons, Ltd; 2013. p. 343-80.

  22. Vukovic J, Colditz MJ, Blackmore DG, et al. Microglia modulate hippocampal neural precursor activity in response to exercise and aging. J Neurosci. 2012;32:6435-43.

  23. Sundal C. Microglia: multiple roles in surveillance, circuit shaping, and response to injury. Neurology. 2014;82:1846.

  24. Block ML, Zecca L, Hong J-S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007; 8:57-69.

  25. Godbout JP, Johnson RW. Age and neuroinflammation: a lifetime of psychoneuroimmune consequences. Immunol Allergy Clin North Am. 2009;29:321-37.

  26. Loane DJ, Byrnes KR. Role of microglia in neurotrauma. Neurother. 2010;7:366-77.

  27. Streit WJ. Microglial senescence: does the brain’s immune system have an expiration date? Trends Neurosci. 2006;29: 506-10.

  28. Hasegawa-Ishii S, Takei S, Chiba Y, et al. Morphological impairments in microglia precede age-related neuronal degeneration in senescence-accelerated mice. Neuropathol. 2011;31:20-8.

  29. Ma L, Morton AJ, Nicholson LF. Microglia density decreases with age in a mouse model of Huntington’s disease. Glia. 2003; 43: 274-80.

  30. Streit WJ, Braak H, Xue Q-S, et al. Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer’s disease. Acta Neuropathol (Berl). 2009;118:475-85.

  31. Anderson MA, Ao Y, Sofroniew MV. Heterogeneity of reactive astrocytes. Neurosci Lett. 2014;565:23-9.

  32. Kimelberg HK, Nedergaard M. Functions of astrocytes and their potential as therapeutic targets. Neurother. 2010;7:338-53.

  33. Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol (Berl). 2010;119:7-35.

  34. Sofroniew MV. Multiple roles for astrocytes as effectors of cytokines and inflammatory mediators. Neuroscientist. 2014;20: 160-72.

  35. Sofroniew MV. Astrocyte responses to central nervous system injury and disease. In: Kettenmann H, Ransom BR (eds.) Neuroglia. 3rd Ed. New York, NY, USA: Oxford University Press; 2013. p. 653-64.

  36. Han S, Rudd JA, Hu ZY, et al. Analysis of neuronal nitric oxide synthase expression and increasing astrogliosis in the brain of senescence-accelerated-prone 8 mice. Int J Neurosci. 2010; 120:602-8.

  37. Jiang T, Cadenas E. Astrocytic metabolic and inflammatory changes as a function of age. Aging Cell. 2014;13:1059-67.

  38. Jyothi HJ, Vidyadhara DJ, Mahadevan A, et al. Aging causes morphological alterations in astrocytes and microglia in human substantia nigra pars compacta. Neurobiol Aging. 2015;36: 3321-33.

  39. Rodríguez JJ, Yeh C-Y, Terzieva S, et al. Complex and regionspecific changes in astroglial markers in the aging brain. Neurobiol Aging. 2014;35:15-23.

  40. Gallo V, Mangin J-M. Physiology of oligodendrocytes. In: Kettenmann H, Ransom BR (eds.) Neuroglia. 3rd ed. New York, USA: Oxford University Press; 2013. p. 238-53.

  41. Zeis T, Enz L, Schaeren-Wiemers N. The immunomodulatory oligodendrocyte. Brain Res. 2015. [Epub ahead of print].

  42. Bajetto A, Bonavia R, Barbero S, et al. Chemokines and their receptors in the central nervous system. Front Neuroendocrinol. 2001;22:147-84.

  43. Gruol DL, Nelson TE. Physiological and pathological roles of interleukin- 6 in the central nervous system. Mol Neurobiol. 1997; 15:307-39.

  44. Hanke ML, Kielian T. Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clin Sci (Lond). 2011;121:367-87.

  45. Deleidi M, Jäggle M, Rubino G. Immune aging, dysmetabolism, and inflammation in neurological diseases. Front Neurosci. 2015;9:172.

  46. Franceschi C, Capri M, Monti D, et al. Inflammaging and antiinflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev. 2007; 128:92-105.

  47. Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci. 2014;69(Suppl 1):S4-9.

  48. Streit WJ, Xue Q-S. Human CNS immune senescence and neurodegeneration. Curr Opin Immunol. 2014;29:93-6.

  49. Rodríguez-Arellano JJ, Parpura V, Zorec R, et al. Astrocytes in physiological aging and Alzheimer’s disease. Neuroscience. 2015. [Epub ahead of print].

  50. Streit WJ, Xue Q-S, Tischer J, et al. Microglial pathology. Acta Neuropathol Commun. 2014;2.142.

  51. WHO. Dementia. World Health Organization. Available at: http://www.who.int /mediacentre /factsheets/fs362/en/. Accessed September 29, 2015.

  52. Rombouts SA, Barkhof F, Witter MP, et al. Unbiased whole-brain analysis of gray matter loss in Alzheimer’s disease. Neurosci Lett. 2000;285:231-3.

  53. Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl J Med. 2010;362:329-44.

  54. Zhang B, Gaiteri C, Bodea L-G, et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell. 2013;153:707-20.

  55. in t’ Veld BA, Ruitenberg A, Hofman A, et al. Nonsteroidal antiinflammatory drugs and the risk of Alzheimer’s disease. N Engl J Med. 2001;345:1515-21.

  56. Cunningham C, Campion S, Lunnon K, et al. Systemic inflammation induces acute behavioral and cognitive changes and accelerates neurodegenerative disease. Biol Psychiatry. 2009;65: 304-12.

  57. Gandy S, Heppner FL. Microglia as dynamic and essential components of the amyloid hypothesis. Neuron. 2013;78:575-7.

  58. Heneka MT, Kummer MP, Latz E. Innate immune activation in neurodegenerative disease. Nat Rev Immunol. 2014;14:463-77.

  59. Hickman SE, El Khoury J. TREM2 and the neuroimmunology of Alzheimer’s disease. Biochem Pharmacol. 2014;88:495-8.

  60. Cagnin A, Brooks DJ, Kennedy AM, et al. In-vivo measurement of activated microglia in dementia. Lancet. 2001;358:461-7.

  61. Yasuno F, Kosaka J, Ota M, et al. Increased binding of peripheral benzodiazepine receptor in mild cognitive impairment-dementia converters measured by positron emission tomography with [11C]DAA1106. Psychiatry Res. 2012;203:67-74.

  62. Heppner FL, Ransohoff RM, Becher B. Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci. 2015; 16:358-72.

  63. Bamberger ME, Harris ME, McDonald DR, et al. A cell surface receptor complex for fibrillar beta-amyloid mediates microglial activation. J Neurosci. 2003;23:2665-74.

  64. Khoury J El, Hickman SE, Thomas CA, et al. Scavenger receptormediated adhesion of microglia to beta-amyloid fibrils. Nature. 1996;382:716-9.

  65. Paresce DM, Ghosh RN, Maxfield FR. Microglial cells internalize aggregates of the Alzheimer’s disease amyloid beta-protein via a scavenger receptor. Neuron. 1996;17:553-65.

  66. Yan S Du, Zhu H, Fu J, et al. Amyloid-beta peptide-receptor for advanced glycation endproduct interaction elicits neuronal expression of macrophage-colony stimulating factor: a proinflammatory pathway in Alzheimer’s disease. Proc Natl Acad Sci U S A. 1997;94:5296-301.

  67. Berg J Vom, Prokop S, Miller KR, et al. Inhibition of IL-12/IL-23 signaling reduces Alzheimer’s disease-like pathology and cognitive decline. Nat Med. 2012;18:1812-9.

  68. Fillit H, Ding WH, Buee L, et al. Elevated circulating tumor necrosis factor levels in Alzheimer’s disease. Neurosci Lett. 1991; 129:318-20.

  69. Patel NS, Paris D, Mathura V, et al. Inflammatory cytokine levels correlate with amyloid load in transgenic mouse models of Alzheimer’s disease. J Neuroinflammation. 2005;2:9.

  70. Forloni G, Demicheli F, Giorgi S, et al. Expression of amyloid precursor protein mRNAs in endothelial, neuronal and glial cells: modulation by interleukin-1. Brain Res Mol Brain Res. 1992; 16:128-34.

  71. Vasilakos JP, Carroll RT, Emmerling MR, et al. Interleukin-1 beta dissociates beta-amyloid precursor protein and beta-amyloid peptide secretion. FEBS Lett. 1994;354:289-92.

  72. Duong T, Nikolaeva M, Acton PJ. C-reactive protein-like immunoreactivity in the neurofibrillary tangles of Alzheimer’s disease. Brain Res. 1997;749:152-6.

  73. Iwamoto N, Nishiyama E, Ohwada J, et al. Demonstration of CRP immunoreactivity in brains of Alzheimer’s disease: immunohistochemical study using formic acid pretreatment of tissue sections. Neurosci Lett. 1994;177:23-6.

  74. Cunningham C. Microglia and neurodegeneration: the role of systemic inflammation. Glia. 2013;61:71-90.

  75. Hickman SE, Allison EK, El Khoury J. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci. 2008;28:8354-60.

  76. Lucin KM, O’Brien CE, Bieri G, et al. Microglial beclin 1 regulates retromer trafficking and phagocytosis and is impaired in Alzheimer’s disease. Neuron. 2013;79:873-86.

  77. Griciuc A, Serrano-Pozo A, Parrado AR, et al. Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron. 2013;78:631-43.

  78. Mawuenyega KG, Sigurdson W, Ovod V, et al. Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science. 2010;330:1774.

  79. Parkhurst CN, Yang G, Ninan I, et al. Microglia promote learningdependent synapse formation through brain-derived neurotrophic factor. Cell. 2013;155:1596-609.

  80. Armstrong RA. The molecular biology of senile plaques and neurofibrillary tangles in Alzheimer’s disease. Folia Neuropathol. 2009;47:289-99.

  81. Lukiw WJ, Bazan NG. Neuroinflammatory signaling upregulation in Alzheimer’s disease. Neurochem Res. 2000;25:1173-84.

  82. Rodríguez JJ, Olabarria M, Chvatal A, et al. Astroglia in dementia and Alzheimer’s disease. Cell Death Differ. 2009; 16:378-85.

  83. Heneka MT, O’Banion MK, Terwel D, et al. Neuroinflammatory processes in Alzheimer’s disease. J Neural Transm. 2010;117: 919-47.

  84. Heneka MT, Sastre M, Dumitrescu-Ozimek L, et al. Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice. J Neuroinflammation. 2005;2:22.

  85. Rossner S, Lange-Dohna C, Zeitschel U, et al. Alzheimer’s disease beta-secretase BACE1 is not a neuron-specific enzyme. J Neurochem. 2005;92:226-34.

  86. Jellinger KA. The enigma of vascular cognitive disorder and vascular dementia. Acta Neuropathol (Berl). 2007;113:349-88.

  87. Plassman BL, Langa KM, Fisher GG, et al. Prevalence of dementia in the United States: the aging, demographics, and memory study. Neuroepidemiology. 2007;29:125-32.

  88. Moorhouse P, Rockwood K. Vascular cognitive impairment: current concepts and clinical developments. Lancet Neurol. 2008; 7:246-55.

  89. Jellinger KA. Pathology and pathogenesis of vascular cognitive impairment-a critical update. Front Aging Neurosci. 2013;5:17.

  90. Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci. 2003;4:399-415.

  91. Hu X, Li P, Guo Y, et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke. 2012;43:3063-70.

  92. Iadecola C. The pathobiology of vascular dementia. Neuron. 2013;80:844-66.

  93. Venkat P, Chopp M, Chen J. Models and mechanisms of vascular dementia. Exp Neurol. 2015;272:97-108.

  94. Jellinger KA. The enigma of mixed dementia. Alzheimers Dement. 2007;3:40-53.

  95. Gold G, Giannakopoulos P, Herrmann FR, et al. Identification of Alzheimer and vascular lesion thresholds for mixed dementia. Brain. 2007;130:2830-6.

  96. Sachdev PS, Chen X, Joscelyne A, et al. Hippocampal size and dementia in stroke patients: the Sydney stroke study. J Neurol Sci. 2007;260:71-7.

  97. Del Ser T, Hachinski V, Merskey H, et al. An autopsy-verified study of the effect of education on degenerative dementia. Brain. 1999;122:2309-19.

  98. Zekry D, Duyckaerts C, Moulias R, et al. Degenerative and vascular lesions of the brain have synergistic effects in dementia of the elderly. Acta Neuropathol (Berl). 2002;103:481-7.

  99. Burkhardt CR, Filley CM, Kleinschmidt-DeMasters BK, et al. Diffuse Lewy body disease and progressive dementia. Neurology. 1988;38:1520-8.

  100. Graeber MB, Müller U. Dementia with Lewy bodies: disease concept and genetics. Neurogenetics. 2003;4:157-62.

  101. Shepherd CE, Thiel E, McCann H, et al. Cortical inflammation in Alzheimer’s disease but not dementia with Lewy bodies. Arch Neurol. 2000;57:817-22.

  102. Mackenzie IR. Activated microglia in dementia with Lewy bodies. Neurology. 2000;55:132-4.

  103. Katsuse O, Iseki E, Kosaka K. Immunohistochemical study of the expression of cytokines and nitric oxide synthases in brains of patients with dementia with Lewy bodies. Neuropathol. 2003;23:9-15.

  104. Iseki E, Marui W, Akiyama H, et al. Degeneration process of Lewy bodies in the brains of patients with dementia with Lewy bodies using alpha-synuclein-immunohistochemistry. Neurosci Lett. 2000;286:69-73.

  105. McKhann GM, Albert MS, Grossman M, et al. Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick’s Disease. Arch Neurol. 2001;58:1803-9.

  106. Gorno-Tempini ML, Hillis AE, Weintraub S, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011; 76:1006-14.

  107. Rascovsky K, Hodges JR, Knopman D, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134:2456-77.

  108. Armstrong MJ, Litvan I, Lang AE, et al. Criteria for the diagnosis of corticobasal degeneration. Neurology. 2013;80:496-503.

  109. Hutton M, Lendon CL, Rizzu P, et al. Association of missense and 5’-splice-site mutations in tau with the inherited dementia FTDP-17. Nature. 1998;393:702-5.

  110. Cruts M, Theuns J, Van Broeckhoven C. Locus-specific mutation databases for neurodegenerative brain diseases. Hum Mutat. 2012;33:1340-4.

  111. Petkau TL, Neal SJ, Orban PC, et al. Progranulin expression in the developing and adult murine brain. J Comp Neurol. 2010; 518:3931-47.

  112. Bateman A, Bennett HP. The granulin gene family: from cancer to dementia. BioEssays. 2009;31:1245-54.

  113. Pickford F, Marcus J, Camargo LM, et al. Progranulin is a chemoattractant for microglia and stimulates their endocytic activity. Am J Pathol. 2011;178:284-95.

  114. Martens LH, Zhang J, Barmada SJ, et al. Progranulin deficiency promotes neuroinflammation and neuron loss following toxininduced injury. J Clin Invest. 2012;122:3955-9.

  115. Yin F, Banerjee R, Thomas B, et al. Exaggerated inflammation, impaired host defense, and neuropathology in progranulin-deficient mice. J Exp Med. 2010;207:117-28.

  116. Jaturapatporn D, Isaac MGEKN, McCleery J, et al. Aspirin, steroidal and non-steroidal anti-inflammatory drugs for the treatment of Alzheimer’s disease. Cochrane Database Syst Rev. 2012;2:CD006378.

  117. Miguel-Álvarez M, Santos-Lozano A, Sanchis-Gomar F, et al. Non-steroidal anti-inflammatory drugs as a treatment for Alzheimer’s disease: a systematic review and meta-analysis of treatment effect. Drugs Aging. 2015;32:139-47.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Invest Clin. 2016;68

ARTíCULOS SIMILARES

CARGANDO ...