Entrar/Registro  
INICIO ENGLISH
 
Revista de Investigación Clínica
   
MENÚ

Contenido por año, Vol. y Num.

Índice de este artículo

Información General

Instrucciones para Autores

Mensajes al Editor

Directorio






>Revistas >Revista de Investigación Clínica >Ańo 2016, No. 2


Fülöp T, Dupuis G, Witkowski JM, Larbi A
The Role of Immunosenescence in the Development of Age-Related Diseases
Rev Invest Clin 2016; 68 (2)

Idioma: Inglés
Referencias bibliográficas: 90
Paginas: 84-91
Archivo PDF: 93.58 Kb.


Texto completo




RESUMEN

Sin resumen.


Palabras clave: Sin palabras Clave


REFERENCIAS

  1. Lipsky MS, King M. Biological theories of aging. Dis Mon. 2015; 61:460-6.

  2. Robert L, Fulop T (eds) Aging Facts and theories. Interdisciplinary Topics in Gerontology. Vol 38. Karger. 2014.

  3. Pawelec G, Goldeck D, Derhovanessian E. Inflammation, ageing and chronic disease. Curr Opin Immunol. 2014;29:23-8.

  4. Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci. 2014;69(Suppl 1):S4-9.

  5. Seals DR, Justice JN, LaRocca TJ. Physiological geroscience: targeting function to increase healthspan and achieve optimal longevity. J Physiol. 2015 [Epub ahead of print].

  6. Kennedy BK, Berger SL, Brunet A, et al. Geroscience: linking aging to chronic disease. Cell. 2014;159:709-13.

  7. Seals DR, Melov S. Translational geroscience: emphasizing function to achieve optimal longevity. Aging (Albany NY). 2014;6:718-30.

  8. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194-217.

  9. Solana R, Tarazona R, Gayoso I, Lesur O, Dupuis G, Fulop T. Innate immunosenescence: effect of aging on cells and receptors of the innate immune system in humans. Semin Immunol. 2012; 24:331-41.

  10. Montgomery RR, Shaw AC. Paradoxical changes in innate immunity in aging: recent progress and new directions. J Leukoc Biol. 2015;98:937-43.

  11. Castelo-Branco C, Soveral I. The immune system and aging: a review. Gynecol Endocrinol. 2014;30:16-22.

  12. Larbi A, Fulop T. From “truly naďve” to “exhausted senescent” T cells: when markers predict functionality. Cytometry A. 2014; 85:25-35.

  13. Fulop T, Dupuis G, Baehl S, et al. From inflamm-aging to immuneparalysis: a slippery slope during aging for immune-adaptation. Biogerontology. 2015. [Epub ahead of print].

  14. Fortin CF, McDonald PP, Lesur O, Fülöp T. Aging and neutrophils: there is still much to do. Rejuvenation Res. 2008;11:873-82.

  15. Juthani-Mehta M, Guo X, Shaw AC, et al. Innate immune responses in the neutrophils of community dwelling and nursing home elders. J Aging Sci. 2014;2.

  16. Visan I. Aging neutrophils. Nat Immunol. 2015;16:1113.

  17. Baëhl S, Garneau H, Le Page A, et al. Altered neutrophil functions in elderly patients during a 6-month follow-up period after a hip fracture. Exp Gerontol. 2015;65:58-68.

  18. Magrone T, Jirillo E. Disorders of innate immunity in human ageing and effects of nutraceutical administration. Endocr Metab Immune Disord Drug Targets. 2014;14:272-82.

  19. Hazeldine J, Harris P, Chapple IL, et al. Impaired neutrophil extracellular trap formation: a novel defect in the innate immune system of aged individuals. Aging Cell. 2014;13:690-8.

  20. Tseng CW, Liu GY. Expanding roles of neutrophils in aging hosts. Curr Opin Immunol. 2014;29:43-8.

  21. Qian F, Guo X, Wang X, et al. Reduced bioenergetics and toll-like receptor 1 function in human polymorphonuclear leukocytes in aging. Aging (Albany NY). 2014; 6:131-9.

  22. Fortin CF, Larbi A, Lesur O, Douziech N. Fulop T. Impairment of SHP-1 down-regulation in the lipid rafts of human neutrophils under GM-CSF stimulation contributes to their age-related, altered functions. J Leukoc Biol. 2006;79:1061-72.

  23. Khanfer R, Carroll D, Lord JM, Phillips AC. Reduced neutrophil superoxide production among healthy older adults in response to acute psychological stress. Int J Psychophysiol. 2012;86:238-44.

  24. Shaw AC, Goldstein DR, Montgomery RR. Age-dependent dysregulation of innate immunity. Nat Rev Immunol. 2013;13:875-87.

  25. Fulop T, Le Page A, Fortin C, Witkowski JM, Dupuis G, Larbi A. Cellular signaling in the aging immune system. Curr Opin Immunol. 2014;29:105-11.

  26. Sapey E, Greenwood H, Walton G, et al. Phosphoinositide 3-kinase inhibition restores neutrophil accuracy in the elderly: toward targeted treatments for immunosenescence. Blood. 2014;123: 239-48.

  27. Linton PJ, Thoman ML. Immunosenescence in monocytes, macrophages, and dendritic cells: lessons learned from the lung and heart. Immunol Lett. 2014;162:290-7.

  28. Nyugen J, Agrawal S, Gollapudi S, Gupta S. Impaired functions of peripheral blood monocyte subpopulations in aged humans. J Clin Immunol. 2010;30:806-13.

  29. Seidler S, Zimmermann HW, Bartneck M, Trautwein C, Tacke F. Age-dependent alterations of monocyte subsets and monocyterelated chemokine pathways in healthy adults. BMC Immunol. 2010;11:30.

  30. Zacca ER, Crespo MI, Acland RP, et al. Aging impairs the ability of conventional dendritic cells to cross-prime CD8+ T cells upon stimulation with a TLR7 ligand. PLoS One. 2015;10:e0140672.

  31. Pera A, Campos C,López N, et al. Immunosenescence: Implications for response to infection and vaccination in older people. Maturitas. 2015;82:50-5.

  32. Suchy D, Łabuzek K, Bułdak Ł, Szkudłapski D, Okopien´ B. Comparison of chosen activation markers of human monocytes/ macrophages isolated from the peripheral blood of young and elderly volunteers. Pharmacol Rep. 2014;66:759-65.

  33. Verschoor CP, Loukov D, Naidoo A, et al. Circulating TNF and mitochondrial DNA are major determinants of neutrophil phenotype in the advanced-age, frail elderly. Mol Immunol. 2015; 65:148-56.

  34. Li W. Phagocyte dysfunction, tissue aging and degeneration. Ageing Res Rev. 2013;12:1005-12.

  35. Meier J, Sturm A. The intestinal epithelial barrier: does it become impaired with age? Dig Dis. 2009;27:240-5.

  36. Valentini L, Ramminger S, Haas V, et al. Small intestinal permeability in older adults. Physiol Rep. 2014;2:e00281.

  37. Franceschi C, Bonafč M, Valensin S, et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908:244-54.

  38. Goto M. Inflammaging (inflammation + aging): a driving force for human aging based on an evolutionarily antagonistic pleiotropy theory? Biosci Trends. 2008;2:218-30.

  39. Palmer DB. The effect of age on thymic function. Front Immunol. 2013;4:316.

  40. Qi Q, Zhang DW, Weyand CM, Goronzy JJ. Mechanisms shaping the naďve T cell repertoire in the elderly - thymic involution or peripheral homeostatic proliferation? Exp Gerontol. 2014; 54:71-4.

  41. Appay V, Sauce D. Naive T cells: the crux of cellular immune aging? Exp Gerontol. 2014;54:90-3.

  42. Fülöp T, Larbi A, Pawelec G. Human T cell aging and the impact of persistent viral infections. Front Immunol. 2013;4:271.

  43. Pawelec G. Immunosenenescence: role of cytomegalovirus. Exp Gerontol. 2014;54:1-5.

  44. Nilsson BO, Ernerudh J, Johansson B, et al. Morbidity does not influence the T-cell immune risk phenotype in the elderly: findings in the Swedish NONA Immune Study using sample selection protocols. Mech Ageing Dev. 2003;124:469-76.

  45. Wikby A, Johansson B, Olsson J, Löfgren S, Nilsson BO, Ferguson F. Expansions of peripheral blood CD8 T-lymphocyte subpopulations and an association with cytomegalovirus seropositivity in the elderly: the Swedish NONA immune study. Exp Gerontol. 2002;37:445-53.

  46. Larbi A, Dupuis G, Khalil A, Douziech N, Fortin C, Fulop T. Differential role of lipid rafts in the functions of CD4+ and CD8+ human T lymphocytes with aging. Cell Signal. 2006;18:1017-30.

  47. Larbi A, Fortin C, Dupuis G, Berrougui H, Khalil A, Fulop T. Immunomodulatory role of high-density lipoproteins: impact on immunosenescence. Age (Dordr). 2014;36:9712.

  48. Larbi A, Pawelec G, Wong SC, Goldeck D, Tai JJ, Fülöp T. Impact of age on T cell signaling: a general defect or specific alterations? Ageing Res Rev. 2011;10:370-8.

  49. Goronzy JJ, Li G, Yu M, Weyand CM. Signaling pathways in aged T cells – a reflection of T cell differentiation, cell senescence and host environment. Semin Immunol. 2012;24:365-72.

  50. Le Page A, Fortin C, Garneau H, et al. Downregulation of inhibitory SRC homology 2 domain-containing phosphatase-1 (SHP-1) leads to recovery of T cell responses in elderly. Cell Commun Signal. 2014;12:2.

  51. Li G, Yu M, Lee WW, et al. Decline in miR-181a expression with age impairs T cell receptor sensitivity by increasing DUSP6 activity. Nat Med. 2012;18:1518-24.

  52. Giunta S. Exploring the complex relations between inflammation and aging (inflamm-aging): anti-inflamm-aging remodelling of inflamm- aging, from robustness to frailty. Inflamm Res. 2008; 57:558-63.

  53. Michaud M, Balardy L, Moulis G, et al. Proinflammatory cytokines, aging, and age-related diseases. J Am Med Dir Assoc. 2013;14:877-82.

  54. Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci. 2014;69(Suppl 1):S4-9.

  55. Howcroft TK, Campisi J, Louis GB, et al. The role of inflammation in age-related disease. Aging (Albany NY). 2013;5:84-93.

  56. Castellani GC, Menichetti G, Garagnani P, et al. Systems medicine of inflammaging. Brief Bioinform. 2015. [Epub ahead of print].

  57. Laberge RM, Sun Y, Orjalo AV, et al. MTOR regulates the protumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol. 2015;17:1049-61.

  58. Van Deursen JM. The role of senescent cells in ageing. Nature. 2014;509:439-46.

  59. Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest. 2013;123:966-72.

  60. Morrisette-Thomas V, Cohen AA, Fülöp T, et al. Inflamm-aging does not simply reflect increases in pro-inflammatory markers. Mech Ageing Dev. 2014;139:49-57.

  61. Jagger A, Shimojima Y, Goronzy JJ, Weyand CM. Regulatory T cells and the immune aging process: a mini-review. Gerontology. 2014;60:130-7.

  62. Bueno V, Sant’Anna OA, Lord JM. Ageing and myeloid-derived suppressor cells: possible involvement in immunosenescence and age-related disease. Age (Dordr). 2014;36:9729.

  63. Verschoor CP, Johnstone J, Millar J, et al. Blood CD33(+)HLADR(-) myeloid-derived suppressor cells are increased with age and a history of cancer. J Leukoc Biol. 2013;93:633-7.

  64. Fülöp T, Fortin C, Lesur O, et al. The innate immune system and aging: What is the contribution to immunosenescence? Open Longevity Science. 2012;6:121-32.

  65. Netea MG, Quintin J, van der Meer JW. Trained immunity: a memory for innate host defense. Cell Host Microbe. 2011;9:355-61.

  66. Bekkering S, Joosten LA, van der Meer JW, Netea MG, Riksen NP. The epigenetic memory of monocytes and macrophages as a novel drug target in atherosclerosis. Clin Ther. 2015;37:914-23

  67. Kyburz D, Karouzakis E, Ospelt C. Epigenetic changes: the missing link. Best Pract Res Clin Rheumatol. 2014;28:577-87.

  68. Kleinnijenhuis J, Quintin J, Preijers F, et al. Bacille Calmette- Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci U S A. 2012;109:17537-42.

  69. Quintin J, Saeed S, Martens JH, et al. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe. 2012;12:223-32.

  70. Ostuni R, Piccolo V, Barozzi I, et al. Latent enhancers activated by stimulation in differentiated cells. Cell. 2013;152:157-71.

  71. Cheng SC, Quintin J, Cramer RA, et al. mTOR- and HIF-1α- mediated aerobic glycolysis as metabolic basis for trained immunity. Science. 2014;345:1250684.

  72. Saeed S, Quintin J, Kerstens HH, et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science. 2014;345:1251086.

  73. Heneka MT, Carson MJ, El Khoury J, et al. Neuroinflammation in Alzheimer’s disease Lancet Neurol. 2015;14:388-405.

  74. Deleidi M, Jäggle M, Rubino G. Immune aging, dysmetabolism, and inflammation in neurological diseases. Front Neurosci. 2015; 9:172.

  75. Vida C, González EM, De la Fuente M. Increase of oxidation and inflammation in nervous and immune systems with aging and anxiety. Curr Pharm Des. 2014;20:4656-78.

  76. ElAli A, Rivest S. Microglia in Alzheimer’s disease: A multifaceted relationship. Brain Behav Immun. 2015. [Epub ahead of print].

  77. Le Page A, Bourgade K, Lamoureux J, et al. NK cells are activated in amnestic mild cognitive impairment but not in mild alzheimer’s disease patients. J Alzheimers Dis. 2015;46:93-107.

  78. Larbi A, Pawelec G, Witkowski JM, et al. Dramatic shifts in circulating CD4 but not CD8 T cell subsets in mild Alzheimer’s disease. J Alzheimers Dis. 2009;17:91-103.

  79. Wu IC, Lin CC, Hsiung CA. Emerging roles of frailty and inflammaging in risk assessment of age-related chronic diseases in older adults: the intersection between aging biology and personalized medicine. Biomedicine (Taipei). 2015;5:1.

  80. McElhaney JE, Garneau H, Camous X, et al. Predictors of the antibody response to influenza vaccination in older adults with type 2 diabetes. BMJ Open Diabetes Res Care. 2015;3:e000140.

  81. Mori TA, Woodman RJ, Burke V, Puddey IB, Croft KD, Beilin LJ. Effect of eicosapentaenoic acid and docosahexaenoic acid on oxidative stress and inflammatory markers in treated-hypertensive type 2 diabetic subjects. Free Radic Biol Med. 2003; 35:772-81.

  82. Guarner V, Rubio-Ruiz ME. Low-grade systemic inflammation connects aging, metabolic syndrome and cardiovascular disease. Interdiscip Top Gerontol. 2015;40:99-106.

  83. Husain K, Hernandez W, Ansari RA, Ferder L. Inflammation, oxidative stress and renin angiotensin system in atherosclerosis. World J Biol Chem. 2015;6:209-17.

  84. Wick G, Perschinka H, Millonig G. Atherosclerosis as an autoimmune disease: an update. Trends Immunol. 2001;22:665-9.

  85. Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868-74.

  86. Yu HT, Park S, Shin EC, Lee WW. T cell senescence and cardiovascular diseases. Clin Exp Med. 2015. [Epub ahead of print].

  87. Anker SD, von Haehling S. Inflammatory mediators in chronic heart failure: an overview. Heart. 2004;90:464-70.

  88. Moro-García MA, Echeverría A, Galán-Artímez MC, et al. Immunosenescence and inflammation characterize chronic heart failure patients with more advanced disease. Int J Cardiol. 2014; 174:590-9.

  89. Birks EJ, Felkin LE, Banner NR, Khaghani A, Barton PJ, Yacoub MH. Increased toll-like receptor 4 in the myocardium of patients requiring left ventricular assist devices. J Heart Lung Transplant. 2004;23:228-35.

  90. Foldes G, von Haehling S, Okonko DO, Jankowska EA, Poole- Wilson PA, Anker SD. Fluvastatin reduces increased blood monocyte Toll-like receptor 4 expression in whole blood from patients with chronic heart failure. Int J Cardiol. 2008;124:80-5.



>Revistas >Revista de Investigación Clínica >Ańo2016, No. 2
 

· Indice de Publicaciones 
· ligas de Interes 






       
Derechos Resevados 2019