medigraphic.com
ENGLISH

Correo Científico Médico de Holguín

ISSN 1560-4381 (Impreso)
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2016, Número 2

<< Anterior Siguiente >>

Correo Científico Médico 2016; 20 (2)


Papel de la reprogramación metabólica en la carcinogénesis

Alonso RA, Pérez CM, Vidal PZ, Vidal PA
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 37
Paginas: 292-304
Archivo PDF: 406.50 Kb.


PALABRAS CLAVE

reprogramación metabólica, cáncer, oncogenes, genes supresores tumorales.

RESUMEN

El papel de los oncogenes y genes supresores de tumor en el control del ciclo celular es conocido, pero, su efecto directo en el metabolismo de la célula tumoral resulta un tema novedoso en la Oncología actual. El concepto de reprogramación metabólica es retomado como un concepto interesante. Por ello, se realizó la presente búsqueda bibliográfica en la base de datos PubMed usando los descriptores: genes, suppressor and metabolism; oncogenes and metabolism; neoplasms and metabolism. Las mutaciones en oncogenes que codifican para PI3K, AKT, mTORC y Myc inducen un aumento de la expresión de isoenzimas de la vía glucolítica y reprimen la fosforilación oxidativa, lo que garantiza un metabolismo anabólico, además, se relacionan con el aumento del consumo de glucosa y liberación de lactato. En células transformadas se demuestra la importancia del metabolismo anabólico para la progresión del tumor, esta es una alternativa para su tratamiento.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Becker WM, Kleinsmiht LJ, Hardin J. El mundo de la célula. 6ta ed. Madrid: Addison Wesly; 2007

  2. Karp G. Biología celular y molecular.5ta ed .México: Mc Graw Hill; 2009

  3. Lu J, Tan M, Cai Q. The Warburg effect in tumor progression: Mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Lett. 2015[citado 1 feb 2016]; 356(2 Part A):156-164.Dipsonible en: http://www.sciencedirect.com/science/article/pii/S0304383514002079

  4. Jiménez BN, Vega RJ, Barguil Meza I. Acidosis láctica tipo b1 secundaria a linfoma de burkitt. Rev. Clín Esc Med UCR-HSJD. 2012[citado 1 feb 2016]; 2(5):1-4.Disponible en: http://www.revistas.ucr.ac.cr/index.php/clinica/article/view/6512/6210

  5. Santandreu Jaume FM. Cáncer de colon: nuevos hallazgos moleculares y posible importancia clínica. Medici Balear. 2013[citado 2 jun 2014]; 28 (1): 35-40 Disponible en: http://ibdigital.uib.es/greenstone/collect/medicinaBalear/archives/Medicina/_Balear_/2013v28n/1p035.dir/Medicina_Balear_2013v28n1p035.pdf

  6. Koppenol WH, Bounds PL, Dang CV. Otto Warburg's contributions to current concepts of cancer metalabolism. Nat Rev Cancer. 2011 [citado 2 jun 2014]; 11(5):325-337.Disponible en: http://www.nature.com/nrc/journal/v11/n5/full/nrc3038.html

  7. Ward PS, Thompson CB. Metabolic Reprograming: A cancer Hallmark even Waburg did not anticipate. Cancer Cell. 2012[citado 2 jun 2014]; 21(3):297-308.Disponible en: http://www.sciencedirect.com/science/article/pii/S1535610812000785

  8. Hanahan D, Weinberg RA. Hallmark of cacer: Net generations. Cell. 2011[citado 1 feb 2016]; 144(5):646-674.Disponible en: http://www.cell.com/cell/abstract/S0092-8674%2811%290

  9. Lurlaro R, León-Annicchiarico CL, Muñoz-Pinedo C. Regulation of cancer metabolism by oncogenes and tumor suppressors. Methods Enzymol. 2014[citado 2 jun 2014]; 542:59-80.Disponible en:http://www.sciencedirect.com/science/article/pii/B9780124166189000030

  10. 10.Álvarez Estrabao OA, Cruz Mariño T, Concepción Osorio M, Cardet Escalona M, Díaz Armas MT. Asesoramiento genético sobre el cáncer de mama. CCM.2012 [citado 1 ene 2016]; 16(2). Disponible en: www.revcocmed.sld.cu/index.php/cocmed/article/view/506/70

  11. Ortigoza Garcell RI. Miguel Soca PE, Machín Batista D. Variantes genéticas en el cáncer de mama. CCM. 2012[citado 1 feb 2016]; 16(4).Disponible en: http://revcocmed.sld.cu/index.php/cocmed/article/view/737/230

  12. 12.Ávila Mora MC, Sansarí Baro JT, Pavón Gómez V. Genes en el cáncer de cuello uterino. CCM.2012 [citado 1 feb 2016]; 17(1).Disponible en: http://revcocmed.sld.cu/index.php/cocmed/article/view/969/263

  13. Ledford H. Metabolic quirks yield tumour hope .Nature. 2014[citado 2 jun 2014]; 508(7495): 158–159.Disponible en: http://www.nature.com/news/metabolic-quirks-yield-tumour-hope-1.15005

  14. Liem Minh P, Sai-Ching Jim Y, and Mong-Hong L. Cancer metabolic reprogramming: importance, main features, and potentials for precise targeted anti-cancer therapies. Cancer Biol Med. 2014 [2 citado jun 2014]; 11(1):1-19.Disponible en: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3969803/

  15. Hu ZY, Xiao L, Bode AM, Dong Z, Cao Y. Glycolytic genes in cancer cells are more than glucose metabolic regulators. J Mol Med . 2014 [citado 2 jun 2014]; 92(8):837-845. Disponible en: http://link.springer.com/article/10.1007/s00109-014-1174-x

  16. Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, et al. p53 Regulates Mitochondrial Respiration. Science. 2006[citado 2 jun 2014]; 312(5780):1650-1653.Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/16728594

  17. Denko NC. Hypoxia, HIF1 and glucose metabolism in the solid tumor. Nat Rev Cancer. 2008 [citado 2 jun 2014]; 8(9):705-713.Disponible en: http://www.nature.com/nrc/journal/v8/n9/full/nrc2468.html

  18. Gaglio D, Metallo CM, Gameiro PA, Hiller K, Danna LS, Balestrieri C, et al. Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol Syst Biol. 2011 [citado 2 jun 2014]; 7(1):1-15.Disponible en: http://onlinelibrary.wiley.com/doi/10.1038/msb.2011.56/full

  19. Chin L, Tam A, Pomerantz J, Wong M, Holash J, Bardeesy N, et al. Essential role for oncogenic Ras in tumour maintenance. Nature. 1999[citado 2 jun 2014]; 400(6743):468–472.Disponible en: http://www.nature.com/nature/journal/v400/n6743/abs/400468a0.html

  20. Iqbal MA, Siddiqui FA, Chaman N, Gupta V, Kumar B, Gopinath P, et al. Missense mutations in pyruvate kinase M2 promote cancer metabolism, oxidative endurance, anchorage independence, and tumor growth in a dominant negative manner. J Biol Chem.2014 [citado 2 jun 2014]; 289(12):8098-8105.Disponible en: http://www.jbc.org/content/289/12/8098.full.pdf

  21. Kroemer G, Pouyssegur J. Tumor Cell Metabolism: Cancer's Achilles ‘ heel. Cancer Cell. 2008[citado 1 feb 2016]; 13(16):472-482. Disponible en: http://www.sciencedirect.com/science/article/pii/S1535610808001608

  22. Mathupala SP, Ko YH, Pedersen PL. Hexokinase II: Cancer's double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitocondria. Oncogene. 2006 [citado 2 jun 2014]; 25(34):4777–4786.Diponible en: http://www.nature.com/onc/journal/v25/n34/full/1209603a.html

  23. Swinnen JV, Roskams T, Joniau S, Van Poppel H, Oyen R, Baert L, et al. Overexpression of fatty acid synthase is an early and common event in the development of prostate cancer. Int J Cancer.2002 [citado 2 jun 2014]; 98(1):19-22.Disponible en: http://onlinelibrary.wiley.com/doi/10.1002/ijc.10127/full

  24. Vander Heiden MG, Lunt SY, Dayton TL, Fiske BP, Israelsen WJ, Mattaini KR, et al. Metabolic Pathway Alterations that Support Cell Proliferation. Cold Spring Harb Symp Quant Biol. 2011 [citado 2 jun 2014]; 76:325-334.Disponible en: http://symposium.cshlp.org/content/76/325.full

  25. Kato Kaneko M, Liu X, Oki H, Ogasawara S, Nakamura T, Saidoh N, et al. Isocitrate dehydrogenase mutation is frequently observed in giant cell tumor of bone. 2014. Cancer Sci.2014 [citado 2 jun 2014]; 105(6):744-748.Disponible en: http://onlinelibrary.wiley.com/doi/10.1111/cas.12413/abstract

  26. Grassian AR, Parker SJ, Davidson SM, Divakaruni AS, Green CR, Zhang X, et al. IDH1 Mutations Alter Citric Acid Cycle Metabolism and Increase Dependence on Oxidative Mitochondrial Metabolism. Cancer Res.2014 [citado 2 jun 2014]; 74(12):3317-3331. Disponible en: http://cancerres.aacrjournals.org/content/74/12/3317.abstract

  27. Fathi AT, Sadrzadeh H, Comander AH, Higgins MJ, Bardia A, Perry A, et al. Isocitrate Dehydrogenase 1 (IDH1) Mutation in Breast Adenocarcinoma Is Associated With Elevated Levels of Serum and Urine 2-Hydroxyglutarate.Oncologist.2014[citado 2 jun 2014];19(6):602-607. Disponible en: http://theoncologist.alphamedpress.org/content/19/6/602.full.pdf+html

  28. Wang JH, Chen WL, Chen SJ. Prognostic significance of 2-hydroxyglutarate levels in acute myeloid leukemia in China.Proc Natl Acad Sci USA. 2013 [citado 2 jun 2014]; 110(42):17017-17022.Disponible en: http://www.pnas.org/content/110/42/17017.short

  29. Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase–AKT pathway in human cáncer. Nat. Rev. Cancer. 2002 [citado 2 jun 2014]; 2(7):489-501.Disponible en: http://www.nature.com/nrc/journal/v2/n7/abs/nrc839.html

  30. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The Biology of Cancer: Metabolic Reprogramming Fuels Cell Growth and Proliferation. Cell Metabolism. 2008 [citado 2 jun 2014]; 7(1):11-20.Disponible en: http://www.sciencedirect.com/science/article/pii/S1550413107002951

  31. Elstrom RL, Bauer DE, Buzzai M , Karnauskas R, Harris MH , Plas DR, et al . Akt stimulates aerobic glycolysis in cancer cells. Cancer Res.2004 [citado 2 jun 2014]; 64(11):3892-3899.Disponible en: http://cancerres.aacrjournals.org/content/64/11/3892.short

  32. Plas DR, Thompson CB. Akt-dependent transformation: there is more to growth than just surviving. Oncogene. 2005 [citado 2 jun 2014]; 24(50):7435–7442.Disponible en: http://www.nature.com/onc/journal/v24/n50/full/1209097a.html

  33. Wakil SJ. Fatty acid synthase, a proficient multifunctional enzyme. Biochemistry.1989 [citado 2 jun 2014]; 28(11):4523–4530.Disponible en: http://pubs.acs.org/doi/abs/10.1021/bi00437a001

  34. Hatzivassiliou G, Zhao F, Bauer DE, Andreadis C, Shaw AN, Dhanak D, et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cencer Cell .2005 [citado 2 jun 2014]; 8(4):311-321.Disponible en: http://www.sciencedirect.com/science/article/pii/S1535610805003016

  35. Yang C, Sudderth J, Dang T, Bachoo R, McDonald JG, DeBerardinis RJ. Glioblastoma Cells Require Glutamate Dehydrogenase to Survive Impairments of Glucose Metabolism or Akt Signaling. Cancer Res. 2009 [citado 2 jun 2014]; 69(20):7986–7993.Disponible en: http://cancerres.aacrjournals.org/content/69/20/7986.short

  36. Gabay M, Li Y, Felsher DW. MYC Activation Is a Hallmark of Cancer Initiation and Maintenance. Cold Spring Harb Perspect Med. 2014[citado 2 jun 2014]; 4(6).Disponible en: http://perspectivesinmedicine.cshlp.org/content/4/6/a014241.short

  37. Dang CV, Le A, Gao P. MYC-Induced Cancer Cell Energy Metabolism and Therapeutic Opportunities. Clin Cancer Res.2009 [citado 2 jun 2014]; 15(21):6479-6483.Disponible en: https://clincancerres.aacrjournals.org/content/15/21/6479.full




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Correo Científico Médico. 2016;20

ARTíCULOS SIMILARES

CARGANDO ...