medigraphic.com
ENGLISH

Biotecnología Aplicada

ISSN 1027-2852 (Digital)
ISSN 0864-4551 (Impreso)
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2016, Número 2

<< Anterior Siguiente >>

Biotecnol Apl 2016; 33 (2)


P3, un anticuerpo monoclonal capaz de activar células B-1a

Martínez D, Cabrera L, Hernández AM
Texto completo Cómo citar este artículo Artículos similares

Idioma: Ingles.
Referencias bibliográficas: 45
Paginas: 2211-2216
Archivo PDF: 927.37 Kb.


PALABRAS CLAVE

células B-1a, respuesta idiotípica, inmunogenicidad, anticuerpo monoclonal.

RESUMEN

El P3 es un anticuerpo monoclonal murino de isotipo IgM, que reconoce a los gangliósidos N-glicolilados (un tipo de glicolípidos presente en la membrana celular de la mayoría de los vertebrados), a otros auto-antígenos como los sulfátidos y posee una alta homología con un anticuerpo que reconoce a la mielina de los oligodendrocitos. A pesar de ser una proteína autóloga, previamente se demostró que es capaz de activar una cascada idiotípica de células B y T CD4+ y CD8+ anti-idiotípicas en ausencia de adyuvantes o proteínas transportadoras. Las células B-1a son la población dominante durante las fases tempranas del desarrollo, cuando se establece la conectividad idiotípica, y los anticuerpos naturales de línea germinal secretados por estas células desempeñan un papel fundamental en la protección contra infecciones y el mantenimiento de la homeostasis. En este trabajo se demostró que el AcM P3 es capaz de reconocer a células B-1a de ratones BALB/c vírgenes. Este anticuerpo indujo en dichas células la expresión a altos niveles de los marcadores de activación CD25, CD69 y CD86, la secreción de IgM y un patrón mixto de las citocinas IFN-γ, IL-4 e IL-10. La capacidad del AcM P3 para activar células B-1a puede contribuir a su inmunogenicidad en el modelo singénico y, además, ser usada como una herramienta para direccionar específicamente contra las células B-1a y estimularlas.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Libbey JE, Peterson LK, Tsunoda I, Fujinami RS. Monoclonal MOG-reactive autoantibody from progressive EAE has the characteristics of a natural antibody. J Neuroimmunol. 2006;173(1-2):135-45.

  2. Vazquez AM, Perez A, Hernandez AM, Macias A, Alfonso M, Bombino G, et al. Syngeneic anti-idiotypic monoclonal antibodies to an anti-NeuGc-containing ganglioside monoclonal antibody. Hybridoma. 1998;17(6):527-34.

  3. Ismaili J, Brait M, Leo O, Urbain J. Assessment of a functional role of auto-anti-idiotypes in idiotype dominance. Eur J Immunol. 1995;25(3):830-7.

  4. Reitan SK, Hannestad K. The primary IgM antibody repertoire: a source of potent idiotype immunogens. Eur J Immunol. 2001;31(7):2143-53.

  5. Reitan SK, Hannestad K. Immunoglobulin heavy chain constant regions regulate immunity and tolerance to idiotypes of antibody variable regions. Proc Natl Acad Sci U S A. 2002;99(11):7588-93.

  6. Zhang X, Smith DS, Guth A, Wysocki LJ. A receptor presentation hypothesis for T cell help that recruits autoreactive B cells. J Immunol. 2001;166(3):1562-71.

  7. Lopez-Requena A, Bestagno M, Mateo de Acosta C, Cesco-Gaspere M, Vazquez AM, Perez R, et al. Gangliosides, Ab1 and Ab2 antibodies III. The idiotype of antiganglioside mAb P3 is immunogenic in a T cell-dependent manner. Mol Immunol. 2007;44(11):2915-22.

  8. Perez A, Lombardero J, Mateo C, Mustelier G, Alfonso M, Vazquez AM, et al. Immunogenetic analysis of variable regions encoding AB1 and gamma-type AB2 antibodies from the NeuGc-containing ganglioside family. Hybridoma. 2001;20(4):211-21.

  9. Martinez D, Rodriguez N, Grinan T, Rondon T, Vazquez AM, Perez R, et al. P3 mAb: An Immunogenic Anti-NeuGcGM3 Antibody with Unusual Immunoregulatory Properties. Front Immunol. 2012;3:94.

  10. Ben-Yehuda A, Szabo P, LeMaoult J, Manavalan JS, Weksler ME. Increased VH 11 and VH Q52 gene use by splenic B cells in old mice associated with oligoclonal expansions of CD5 + B cells. Mech Ageing Dev. 1998;103(2):111-21.

  11. Margry B, Wieland WH, van Kooten PJ, van Eden W, Broere F. Peritoneal cavity B-1a cells promote peripheral CD4+ T-cell activation. Eur J Immunol. 2013;43(9):2317-26.

  12. Elliott M, Kearney JF. Idiotypic regulation of development of the B-cell repertoire. Ann N Y Acad Sci. 1992;651:336-45.

  13. Hayakawa K, Hardy RR. Development and function of B-1 cells. Curr Opin Immunol. 2000;12(3):346-53.

  14. Zhong X, Gao W, Degauque N, Bai C, Lu Y, Kenny J, et al. Reciprocal generation of Th1/Th17 and T(reg) cells by B1 and B2 B cells. Eur J Immunol. 2007;37(9):2400-4.

  15. Gao J, Ma X, Gu W, Fu M, An J, Xing Y, et al. Novel functions of murine B1 cells: active phagocytic and microbicidal abilities. Eur J Immunol. 2012;42(4):982-92.

  16. Parra D, Rieger AM, Li J, Zhang YA, Randall LM, Hunter CA, et al. Pivotal advance: peritoneal cavity B-1 B cells have phagocytic and microbicidal capacities and present phagocytosed antigen to CD4+ T cells. J Leukoc Biol. 2012;91(4):525-36.

  17. Baumgarth N. The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat Rev Immunol. 2011;11(1):34-46.

  18. Vazquez AM, Alfonso M, Lanne B, Karlsson KA, Carr A, Barroso O, et al. Generation of a murine monoclonal antibody specific for N-glycolylneuraminic acid-containing gangliosides that also recognizes sulfated glycolipids. Hybridoma. 1995;14(6):551-6.

  19. Morris DL, Rothstein TL. Abnormal transcription factor induction through the surface immunoglobulin M receptor of B-1 lymphocytes. J Exp Med. 1993;177(3) :857-61.

  20. Gronwall C, Silverman GJ. Natural IgM: beneficial autoantibodies for the control of inflammatory and autoimmune disease. J Clin Immunol. 2014;34 Suppl 1:S12-21.

  21. Bogen B, Jorgensen T, Hannestad K. Recognition of lambda 1 and lambda 2 murine light chains by carrier-specific isologous T helper cells; effect of L-H chain assembly. Eur J Immunol. 1983;13(5):353-9.

  22. Hernandez AM, Rodriguez M, Lopez- Requena A, Beausoleil I, Perez R, Vazquez AM. Generation of anti-Neu-glycolyl-ganglioside antibodies by immunization with an anti-idiotype monoclonal antibody: A self versus non-self-matter. Immunobiology. 2005;210(1):11-21.

  23. Perez A, Mier ES, Vispo NS, Vazquez AM, Perez Rodriguez R. A monoclonal antibody against NeuGc-containing gangliosides contains a regulatory idiotope involved in the interaction with B and T cells. Mol Immunol. 2002;39(1-2):103-12.

  24. Zenita K, Hirashima K, Shigeta K, Hiraiwa N, Takada A, Hashimoto K, et al. Northern hybridization analysis of VH gene expression in murine monoclonal antibodies directed to cancer-associated ganglioside antigens having various sialic acid linkages. J Immunol. 1990;144(11):4442-51.

  25. Weng NP, Ritter E, Yucel E, Zhang D, Ritter G, Marcus DM. Specificity and structure of murine monoclonal antibodies against GM1 ganglioside. J Neuroimmunol. 1994;55(1):61-8.

  26. Lopez-Requena A, Mateo De Acosta C, Vazquez AM, Perez R. Immunogenicity of autologous immunoglobulins: principles and practices. Mol Immunol. 2007;44(11):3076-82.

  27. Rodriguez-Zhurbenko N, Rabade-Chediak M, Martinez D, Grinan T, Hernandez AM. Anti-NeuGcGM3 reactivity: a possible role of natural antibodies and B-1 cells in tumor immunosurveillance. Ann N Y Acad Sci. 2015;1362:224-38.

  28. van Rooijen N. Direct intrafollicular differentiation of memory B cells into plasma cells. Immunol Today. 1990;11(5):154-7.

  29. Kelsoe G. Life and death in germinal centers (redux). Immunity. 1996;4(2):107-11.

  30. Gulbranson-Judge A, Casamayor-Palleja M, MacLennan IC. Mutually dependent T and B cell responses in germinal centers. Ann N Y Acad Sci. 1997;815:199-210.

  31. Vigna AF, Godoy LC, Rogerio de Almeida S, Mariano M, Lopes JD. Characterization of B-1b cells as antigen presenting cells in the immune response to gp43 from Paracoccidioides brasiliensis in vitro. Immunol Lett. 2002;83(1):61-6.

  32. Ehrenstein MR, O’Keefe TL, Davies SL, Neuberger MS. Targeted gene disruption reveals a role for natural secretory IgM in the maturation of the primary immune response. Proc Natl Acad Sci U S A. 1998;95(17):10089-93.

  33. Baumgarth N, Tung JW, Herzenberg LA. Inherent specificities in natural antibodies: a key to immune defense against pathogen invasion. Springer Semin Immunopathol. 2005;26(4):347-62.

  34. Ochsenbein AF, Fehr T, Lutz C, Suter M, Brombacher F, Hengartner H, et al. Control of early viral and bacterial distribution and disease by natural antibodies. Science. 1999;286(5447):2156-9.

  35. Baumgarth N, Chen J, Herman OC, Jager GC, Herzenberg LA. The role of B-1 and B-2 cells in immune protection from influenza virus infection. Curr Top Microbiol Immunol. 2000;252:163-9.

  36. Jayasekera JP, Moseman EA, Carroll MC. Natural antibody and complement mediate neutralization of influenza virus in the absence of prior immunity. J Virol. 2007;81(7):3487-94.

  37. Chou MY, Fogelstrand L, Hartvigsen K, Hansen LF, Woelkers D, Shaw PX, et al. Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans. J Clin Invest. 2009;119(5):1335-49.

  38. Kaveri SV, Silverman GJ, Bayry J. Natural IgM in immune equilibrium and harnessing their therapeutic potential. J Immunol. 2012;188(3):939-45.

  39. Boes M, Esau C, Fischer MB, Schmidt T, Carroll M, Chen J. Enhanced B-1 cell development, but impaired IgG antibody responses in mice deficient in secreted IgM. J Immunol. 1998;160(10):4776-87.

  40. Baumgarth N, Herman OC, Jager GC, Brown LE, Herzenberg LA, Chen J. B-1 and B-2 cell-derived immunoglobulin M antibodies are nonredundant components of the protective response to influenza virus infection. J Exp Med. 2000;192(2):271-80.

  41. Jeong HD, Teale JM. Contribution of the CD5+ B cell to D-proximal VH family expression early in ontogeny. J Immunol. 1990;145(8):2725-9.

  42. Casali P, Kasaian MT, Haughton G. B-1 (CD5 B) cells. En: Coutinho A, Kazatchkine MD, editores. Autoimmunity Physiology and Disease New York: Wiley-Liss Inc.; 1994. p. 57.

  43. Bayry J, Lacroix-Desmazes S, Donkova- Petrini V, Carbonneil C, Misra N, Lepelletier Y, et al. Natural antibodies sustain differentiation and maturation of human dendritic cells. Proc Natl Acad Sci U S A. 2004;101(39) :14210-5.

  44. Hamanova M, Chmelikova M, Nentwich I, Thon V, Lokaj J. Anti-Gal IgM, IgA and IgG natural antibodies in childhood. Immunol Lett. 2015;164(1):40-3.

  45. Rothstein TL. Natural Antibodies as Rheostats for Susceptibility to Chronic Diseases in the Aged. Front Immunol. 2016;7:127.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Biotecnol Apl. 2016;33

ARTíCULOS SIMILARES

CARGANDO ...