medigraphic.com
ENGLISH

Archivos de Neurociencias

Instituto Nacional de Neurología y Neurocirugía
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2015, Número 2

<< Anterior Siguiente >>

Arch Neurocien 2015; 20 (2)


Funciones ejecutivas en adolescentes con conducta antisocial

Broche-Pérez Y, Cortés-González L
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 52
Paginas: 109-115
Archivo PDF: 102.91 Kb.


PALABRAS CLAVE

funciones ejecutivas, adolescentes, test de cartas de wisconsin, torre de Hanoi.

RESUMEN

Las alteraciones en las funciones ejecutivas (FE) han sido tradicionalmente relacionadas con comportamientos antisociales; sin embargo, estudios realizados con adolescentes con conductas antisociales son escasos en la actualidad, concentrándose la mayoría de las investigaciones en adultos que han cometido crímenes. Objetivo: examinar el funcionamiento ejecutivo en adolescentes con conductas antisociales comparando con un grupo de adolescentes con conducta prosocial, específicamente en los procesos de planificación de acciones, flexibilidad mental y reversal learning. Material y métodos: se empleó la torre de Hanoi en una secuencia de tareas múltiples con grados variables de complejidad y el test de cartas de Wisconsin. Se conformaron dos grupos, uno por 38 adolescentes con conducta antisocial con edades comprendidas entre 16 y 18 años y un grupo de control equivalente en edad, sexo y escolaridad; con buena conducta social. Resultados: los adolescentes con conducta antisocial mostraron mayores dificultades en los procesos de planificación, flexibilidad mental y reversal learning en comparación con el grupo de control. Conclusiones: los adolescentes con conducta antisocial muestran dificultades en el procesamiento del feedback en comparación con los adolescentes prosociales, además en la planificación y puesta en ejecución de estrategias de solución de problemas. Estos resultados pueden indicar dificultades relacionadas con las estructuras prefrontales; en particular, las regiones prefrontales dorsolaterales y ventromediales y el circuito de procesamiento del feedback.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Lezak MD. Neuropsychological assessment. New York: Oxford University Press. 1995.

  2. Packwood S, Hodgetts HM, Tremblay S. A multiperspective approach to the conceptualization of executive functions. J Clin Exp Neuropsych 2011; 33(4):456-70.

  3. Fuster JM. Executive frontal functions. Exper Brain Research 2000;133:66-70.

  4. Mesulam MM. The human frontal lobes: transcending the default mode through contingent encoding, in Principles of Frontal Lobe Function, D.T. Stuss and R.T. Knight, Editors. Oxford University Press: New York. 2002.

  5. Broomhall L. Acquired sociopathy: a neuropsychological study of executive dysfunction in violent offenders. Psychiatry, Psychology and Law 2005; 12(2):367-87.

  6. Raaijmakers MAJ. Executive functions in preschool children with aggressive behavior: impairments in inhibitory control. J Abnorm Child Psychol 2008; 1(36):1097-107.

  7. Greenûeld R, Valliant P. Moral reasoning, executive function, and personality in violent and non violent adult offenders. Psychol Rep 2007; 101:323-33.

  8. Hoaken PNS, Allaby DB, Earle J. Executive cognitive functioning and the recognition of facial expressions of emotion in incarcerated violent offenders, non-violent offenders, and controls. Aggressive Behavior 2007; 33:412-21.

  9. Baker S, Ireland JL. The link between dyslexic traits, executive functioning, impulsivity, and social self-esteem among an offender and non-offender sample. Law Psychiatry 2007; 30:492-503.

  10. Miura H. Differences in frontal lobe function between violent and non violent conduct disorder in male adolescents. Psychiatry Clin Neurosci 2009; 63:161-6.

  11. Roussy S, Toupin J. Behavioral inhibition deficits in juvenile psychopaths. Aggressive Behavior 2000; 26(6):413-24.

  12. Santor DA, Ingram A, Kusumakar V. Influence of executive functioning difûculties on verbal aggression in adolescents: moderating effects of winning and losingand increasing and decreasing levels of provocation. Aggressive Behavior 2003; 29:475-88.

  13. Willcutt EG. Validity of the executive function theor y of attention-deficit/hyperactivity disorder: a meta-analytic review. Biological Psychiatry 2005;57:1336-46.

  14. Chan RCK. Assessment of executive functions: review o finstruments and identiûcation of critical issues. Arch Clin Neuropsych 2008; 23:201-16.

  15. Goel V, Pullarab SD, Grafmanc J. A computational model of frontal lobe dysfunction: working memory and the tower of Hanoi task. Cognitive Science 2001; 25:287-313.

  16. Barceló F. Task switching and novelty processing activate a common neural network for cognitive control. J Cogn Neurosc 2006; 18:1734-48.

  17. Barceló F, Knight RT. Both random and perseverative errors under lie WCST deûcits in prefrontal patients. Neuropsychologia 2002; 40:349-56.

  18. Lie CH. Using fmri to decompose the neural processes underlying the wisconsin card sor ting test. Neuroimage 2006;30: 1038-49.

  19. Monchi O. Wisconsin card sorting revisited: distinct neural circuits participating in different stages of the task identiûed by event-related functional magnetic resonance imaging. The Journal of Neuroscience 2001; 21:7733-41.

  20. Berman KF. Physiological activation of a cortical network during performance of the Wisconsin card sorting test: a positron emission tomography study. Neuropsychologia 1995; 33:1027-46.

  21. Rogers RD. Contrasting cortical and subcortical activations produced by attentional-set shifting and reversal learning in humans. J Cogn Neurosc 2002;12:142-62.

  22. Wang L, Kakigi R, Hoshiyama M. Neural activities during wisconsin card sorting test–meg observation. Brain Research: Cognitive Brain Research 2001; 12:19-31.

  23. Nyhus E. Barceló F. The wisconsin card sorting test and the cognitive assessment of prefrontal executive functions: a critical update. Brain Cognition 2009;71:437-51.

  24. Grafman J Cognitive planning deûcitin patients with cerebellar atrophy. Neurol 1992;42(8):1493-6.

  25. Mazzocco MMM, Hagerman RJ, Pennington BF. Problem solving limitations among cytogenetically expressing fragile x women. Ame J Medical Genetics 1992;43:78-86.

  26. Roberts RJ, Hager LD, Heron C. Prefrontal cognitive processes: working memory and inhibition in the antisaccade task. J Exper Psych General 1994; 123(4):374-93.

  27. Morris RG. Planning ability after frontal and temporal lobe lesions in humans:the effects of selection equivocation and working memory load. Cognitive Neuropsychology 1997;14:1007-27.

  28. Goel V, Vartanian O. Dissociating the roles of right ventral lateral and dorsal lateral prefrontal cortex in generation and maintenance of hypotheses in set-shift problems. Cereb Cortex 2005;15(8):1170-7.

  29. Newman SD. Frontal and parietal participation in problem solving in the Tower of London: fMRI and computational modeling of planning and high-level perception. Neuropsych 2003;41:1668-82.

  30. Burgess PW. The cognitive and neuroanatomical correlates of multitasking. Neuropsychol 2000;38:848-63.

  31. Feigenbaum JD, CE Polkey, RG Morris. Deficits in spatial working memory after unilateral temporal lobectomy in man. Neuropsychol 1996;34:163-76.

  32. Muller ST, BL Piper. The psychology experiment building language (PEBL) and PEBL test battery. J Neirosc Methods 2014;222:250-9.

  33. Flores J, F. Ostrosky. Neuropsicología de lóbulos frontales, funciones ejecutivas y conducta humana. Rev Neuropsic Neuropsiq Neuroc 2008; 8(1):47-58.

  34. Ardila A, F. Ostrosky. Desarrollo histórico de las funciones ejecutivas. Neuropsicología, Neuropsiquiatría y Neurociencias 2008; 8(1):1-21.

  35. Bull R, KA Espy, TE Senn. A comparison of performance on the towers of London and Hanoi in young children. J Child Psych Psychiatry 2004;45(4):743-54.

  36. Cohen J. Statistical power analysis for the behavioral Sciences. 2 ed, ed. N.J. Hillsdale1988, New York: Acad Press.

  37. Syngelaki GM. Executive functioning and risky decision making in young male offenders. Crimi Just Behavior 2009;36: 1213-25.

  38. Blair RJR, E. Colledge, DGV Mitchell. Somatic markers and response reversal: Is there orbitofrontal cortex dysfunction in boys with psychopathic tendencies? J Abnormal Child Psychology 2001;29:499-511.

  39. Van-Goozen SHM. Executive functioning in children: A comparison of hospitalised ODD and ODD/ADHD children and normal controls. J Child Psychology Psychiatry 2004;45:284-92.

  40. Paris J. Neuropsychological factors associated with borderline pathology in children. J Am Acad Child Adolesc Psychiatry 1999;38: 770-4.

  41. Zelkowitz P. Diatheses and stressors in borderline pathology of childhood: The role of neuropsychological risk and trauma. J Am Acad Child Adolesc Psychiatry 2001;40:100-5.

  42. Ishikawa SS. Autonomic stress reactivity and executive functions in successful and unsuccessful criminal psychopaths from the community. J Abnorm Psychol 2001;110:423- 32.

  43. Pineda D. Executive dysfunctions in children with attention deûcit hyperactivity disorder. Int J Neurosci 1998;96:177-96.

  44. Diamond A. Executive functions. Ann Rev Psych 2013; 64(64):135-68.

  45. Zelazo PD. The dimensional change card sort (DCCS): a method of assessing executive function in children. Nature Protocols 2003;1(1):297-301.

  46. Tamnes CK. Performance monitoring in children and adolescents: a review of developmental changes in the errorrelated negativity and brain maturation. Developmental Cognitive Neurosc 2013;(6C):1-13.

  47. Holroyd CB. Dorsal anterior cingulate cortex shows fMRI response to internal and external error signals. Nat Neurosc 2004;7(5): 497-8.

  48. Mars RB. Neural dynamics of error processing in medial frontal cortex. Neuroimage 2005;28(4):1007-13.

  49. Lie CH. Using fMRI to decompose the neural processes underlying the Wisconsin Card Sorting Test. Neuroimage 2006; 30(3):1038-49.

  50. Zanolie K. Separable neural mechanisms contribute to feedback processing in a rule-learning task. Neuropsychologia 2008; 46(1):117-26.

  51. Monchi O. Wisconsin card sorting revisited: distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. J Neurosc 2001;21:7733-41.

  52. Tricomi E. Performance feedback drives caudate activation in a phonological learning task. J Cognitive Neurosc 2006; 18(6):1029-43.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Arch Neurocien. 2015;20

ARTíCULOS SIMILARES

CARGANDO ...