medigraphic.com
ENGLISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Digital)
ISSN 1405-888X (Impreso)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2017, Número 1

Siguiente >>

TIP Rev Esp Cienc Quim Biol 2017; 20 (1)


Comportamiento volumétrico de la DL-valina en soluciones acuosas de nitrato de sodio a diferentes temperaturas

Páez-Meza M, Ramos-Montiel J, De La Espriella-Vélez N
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 41
Paginas: 5-15
Archivo PDF: 336.85 Kb.


PALABRAS CLAVE

densidad, DL-valina, soluciones acuosas, volumen molar aparente, volumen molar parcial de transferencia.

RESUMEN

Se determinaron las densidades de la DL-valina (Ácido 2-amino-3-metilbutanoico) en soluciones acuosas de nitrato de sodio en el intervalo de temperaturas desde 283.15 K hasta 318.15 K usando un densímetro de tubo vibratorio Anton Paar DMA 5000. Se calcularon: los volúmenes molares aparentes, los volúmenes molares aparentes a dilución infinita, la segunda derivada de los volúmenes molares parciales a dilución infinita con respecto a la temperatura, así como los volúmenes molares parciales de transferencia y los números de hidratación. Los resultados obtenidos se discutieron en términos de las interacciones predominantes en solución, encontrándose que la DL-valina tiene un efecto disruptor de la estructura del solvente y que a dilución infinita predominan las interacciones soluto-solvente entre el grupo isopropil del aminoácido y los iones sodio y nitrato.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Yan, Z., Wang, J., Zhang, H. & Xuan, X. Volumetric and Viscosity Properties of α-Amino Acids and Their Groups in Aqueous Sodium Caproate Solutions. J. Chem. Eng. Data 50, 1864–1870 (2005). DOI: 10.1021/je0501484

  2. Kirkwood, J. G. Theoretical Studies upon Dipolar Ions. Chem. Rev.24, 233–251 (1939). DOI: 10.1021/cr60078a004

  3. Hvidt, A. & Westh, P. Different Views on the Stability of Protein Conformations and Hydrophobic Effects. J. Solut. Chem.27, 395–402 (1998). DOI: 10.1023/A:1022696404041

  4. Yan, Z., Wang, J., Kong, W. & Lu, J. Effect of temperature on volumetric and viscosity properties of some α-amino acids in aqueous calcium chloride solutions. Fluid Phase Equilibria 215, 143–150 (2004). DOI: 10.1016/j.fluid.2003.07.001

  5. Dhondge, S. S., Zodape, S. P. & Parwate, D. V. Volumetric and viscometric studies of some drugs in aqueous solutions at different temperatures. J. Chem. Thermodyn.48, 207–212 (2012). DOI: 10.1016/j.jct.2011.12.022

  6. Schrier, M. Y., Ying, A. H. C., Ross, M. E. & Schrier, E. E. Free energy changes and structural consequences for the transfer of urea from water and ribonuclease A from dilute buffer to aqueous salt solutions. J. Phys. Chem. 81, 674–679 (1977). DOI: 10.1021/j100522a018

  7. Lapanje, S., Škerjanc, J., Glavnik, S. & Žibret, S. Thermodynamic studies of the interactions of guanidinium chloride and urea with some oligoglycines and oligoleucines. J. Chem. Thermodyn. 10, 425–433 (1978). DOI: 10.1016/0021-9614(78)90089-7

  8. Mishra, A. K. & Ahluwalia, J. C. Apparent molal volumes of amino acids, N-acetylamino acids, and peptides in aqueous solutions. J. Phys. Chem. 88, 86–92 (1984). DOI: 10.1021/ j150645a021

  9. Bhat, R. & Ahluwalia, J. C. Partial molar heat capacities and volumes of transfer of some amino acids and peptides from water to aqueous sodium chloride solutions at 298.15 K. J. Phys. Chem. 89, 1099–1105 (1985). DOI: 10.1021/ j100253a011

  10. Singh, S. K. & Kishore, N. Partial Molar Volumes of Amino Acids and Peptides in Aqueous Salt Solutions at 25°C and a Correlation with Stability of Proteins in the Presence of Salts. J. Solut. Chem. 32, 117–135 (2003). DOI: 10.1023/A:1022946105467

  11. Banipal, T. S. & Singh, G. Thermodynamic study of solvation of some amino acids, diglycine and lysozyme in aqueous and mixed aqueous solutions. Thermochim. Acta 412, 63–83 (2004). DOI: 10.1016/j.tca.2003.08.026

  12. Pal, A. & Chauhan, N. Volumetric, viscometric, and acoustic behaviour of diglycine in aqueous saccharide solutions at different temperatures. J. Mol. Liq. 149, 29–36 (2009). DOI: 10.1016/j.molliq.2009.07.014

  13. Enea, O. & Jolicoeur, C. Heat capacities and volumes of several oligopeptides in urea-water mixtures at 25.degree.C. Some implications for protein unfolding. J. Phys. Chem. 86, 3870–3881 (1982). DOI: 10.1021/j100216a033

  14. Rajagopal, K. & Jayabalakrishnan, S. S. Effect of Temperature on Volumetric and Viscometric Properties of Homologous Amino Acids in Aqueous Solutions of Metformin Hydrochloride. Chin. J. Chem. Eng.18, 425–445 (2010). DOI: 10.1016/S1004-9541(10)60241-8

  15. Banipal, T. S., Kaur, J. & Banipal, P. K. Interactions of some amino acids with aqueous manganese chloride tetrahydrate at T = (288.15 to 318.15) K: A volumetric and viscometric approach. J. Chem. Thermodyn. 48, 181–189 (2012). DOI: 10.1016/j.jct.2011.12.012

  16. Yan, Z., Wang, J., Liu, W. & Lu, J. Apparent molar volumes and viscosity B-coefficients of some α-amino acids in aqueous solutions from 278.15 to 308.15 K. Thermochim. Acta 334, 17–27 (1999). DOI: 10.1016/ S0040-6031(99)00107-0

  17. Kell, G. S. Density, thermal expansivity, and compressibility of liquid water from 0.deg. to 150.deg.. Correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale. J. Chem. Eng. Data 20, 97–105 (1975). DOI: 10.1021/je60064a005

  18. Riddick, J. & Bunger, W. Organic Solvents (Techniques of chemistry). II, (Wiley-Interscience, 1970).

  19. Yang, J.-Z., Lu, X.-M., Gui, J.-S., Xu, W.-G. & Li, H.-W. Volumetric properties of room temperature ionic liquid 2: The concentrated aqueous solutions of {1-methyl-3- ethylimidazolium ethyl sulfate + water} in a temperature range of 278.2 K to 338.2 K. J. Chem. Thermodyn. 37, 1250–1255 (2005). DOI: 10.1016/j.jct.2005.03.002

  20. F.R.S, S. D. O. M. K. B. E. XXVIII. Solute molecular volumes in relation to solvation and ionization. Lond. Edinb. Dublin Philos. Mag. J. Sci. 8, 218–235 (1929). DOI: 10.1080/14786440808564880

  21. Franks, F. & Smith, H. T. Apparent molal volumes and expansibilities of electrolytes in dilute aqueous solution. Trans. Faraday Soc. 63, 2586–2598 (1967). DOI: 10.1039/ TF9676302586

  22. Shekaari, H. & Jebali, F. Densities and electrical conductances of amino acids + ionic liquid ([HMIm]Br) + H2O mixtures at 298.15 K. Fluid Phase Equilibria 295, 68–75 (2010). DOI: 10.1016/j.fluid.2010.04.002

  23. Samanta, T. & Saharay, S. K. Volumetric and viscometric studies of glucose in binary aqueous solutions of urea at different temperatures. J. Chem. Thermodyn. 42, 1131–1135 (2010). DOI: 10.1016/j.jct.2010.04.012

  24. Hepler, L. G. Thermal expansion and structure in water and aqueous solutions. Can. J. Chem. 47, 4613–4617 (1969). DOI: 10.1139/v69-762

  25. Frank, H. S. & Evans, M. W. Free Volume and Entropy in Condensed Systems III. Entropy in Binary Liquid Mixtures; Partial Molal Entropy in Dilute Solutions; Structure and Thermodynamics in Aqueous Electrolytes. J. Chem. Phys. 13, 507–532 (1945). DOI: 10.1063/1.1723985

  26. Ali, A. & Shahjahan. Volumetric, viscometric and refractive index behavior of some α-amino acids in aqueous tetrapropylammonium bromide at different temperatures. J. Iran. Chem. Soc. 3, 340–350 (2006). DOI: 10.1007/ BF03245957

  27. Pal, A. & Chauhan, N. Volumetric behaviour of amino acids and their group contributions in aqueous lactose solutions at different temperatures. J. Chem. Thermodyn. 43, 140–146 (2011). DOI: 10.1016/j.jct.2010.08.004

  28. Belibaĝli, K.B. & Ayranci, E. Viscosities and apparent molar volumes of some amino acids in water and in 6M guanidine hydrochloride at 25°C. J. Solut. Chem. 19, 867–882 (1990). DOI: 10.1007/BF00653072

  29. Liu, C., Zhou, L. & Lin, R. Volumetric Properties of Amino Acids in Aqueous N-methylacetamide Solutions at 298.15 K. J. Solut. Chem. 39, 1253–1263 (2010). DOI: 10.1007/ s10953-010-9585-y

  30. Singh, M., Pandey, M., Yadav, R. K. & Verma, H. S. Thermodynamic studies of molar volume, pair and triplet interactions at increasing side-chain length of α-amino acids in aqueous potassium chloride solutions at different concentration and 310.15 K. J. Mol. Liq. 135, 188–191 (2007). DOI: 10.1016/j.molliq.2006.12.029

  31. Shahidi, F., Farrell, P. G. & Edward, J. T. Partial molar volumes of organic compounds in water. III. Carbohydrates. J. Solut. Chem. 5, 807–816 (1976). DOI: 10.1007/ BF01167236

  32. Millero, F. J., Lo Surdo, A. & Shin, C. The apparent molal volumes and adiabatic compressibilities of aqueous amino acids at 25.degree.C. J. Phys. Chem. 82, 784–792 (1978). DOI: 10.1021/j100496a007

  33. Wang, X., Li, G., Guo, Y., Zheng, Q., Fang, W., Bian, P. & Zhang, L. Interactions of amino acids with aqueous solutions of hydroxypropyl-β-cyclodextrin at different temperatures: A volumetric and viscometric approach. J. Chem. Thermodyn. 78, 128–133 (2014). DOI: 10.1016/j. jct.2014.06.016

  34. Pal, A. & Kumar, S. Volumetric and ultrasonic studies of some amino acids in binary aqueous solutions of MgCl2·6H2O at 298.15 K. J. Mol. Liq. 121, 148–155 (2005). DOI: 10.1016/j.molliq.2004.12.003

  35. Páez, M. S., Alvis, A. & Arrazola, G. Propiedades Volumétricas de Trifluorometanosulfonato de 1-etil-3- metilimidazolio en Solución acuosa de Tiosulfato de Sodio Pentahidratado a Diferentes Temperaturas. Inf. Tecnológica 26, 105–112 (2015). DOI: 10.4067/S0718- 07642015000500014

  36. Páez, F. A., Páez, M. S. & Lamadrid, A. P. Interactions of glycine in aqueous solutions of 1-butyl-3- methylimidazolium tetrafluoroborate at different temperatures. Quím. Nova 37, 418–425 (2014). DOI: 10.5935/0100-4042.20140078

  37. Páez, M. S., Vergara, M. K. & Pérez, O. A. Propiedades Volumétricas de la DL-Alanina en Soluciones Acuosas del Líquido Iónico Cloruro de 1 -Butil-3-Metilimidazolio a las Temperaturas desde 283.15 hasta 313.15 K. Inf. Tecnológica 26, 113–120 (2015). DOI: 10.4067/S0718- 07642015000500015

  38. Tomé, L., Domínguez, M., Claudio, A., Freire, M., Marrucho, I., Cabeza, O. & Coutinho, J. On the Interactions between Amino Acids and Ionic Liquids in Aqueous Media. J. Phys. Chem. B113, 13971–13979 (2009). DOI: 10.1021/ jp906481m

  39. Banerjee, T. & Kishore, N. Interactions of Some Amino Acids with Aqueous Tetraethylammonium Bromide at 298.15 K: A Volumetric Approach. J. Solut. Chem. 34, 137–153 (2005). DOI: 10.1007/s10953-005-2746-8

  40. Singh, S. K., Kundu, A. & Kishore, N. Interactions of some amino acids and glycine peptides with aqueous sodium dodecyl sulfate and cetyltrimethylammonium bromide at T=298.15 K: a volumetric approach. J. Chem. Thermodyn. 36, 7–16 (2004). DOI: 10.1016/j.jct.2003.09.010

  41. Banipal, T. S., Kaur, J., Banipal, P. K. & Singh, K. Study of Interactions between Amino Acids and Zinc Chloride in Aqueous Solutions through Volumetric Measurements at T = (288.15 to 318.15) K. J. Chem. Eng. Data 53, 1803–1816 (2008). DOI: 10.1021/je8001464




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2017;20

ARTíCULOS SIMILARES

CARGANDO ...