medigraphic.com
ENGLISH

Salud Pública de México

Instituto Nacional de Salud Pública
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2017, Número 1

<< Anterior Siguiente >>

salud publica mex 2017; 59 (1)


Riesgos potenciales de salud por consumo de agua con arsénico en Colima, México

Mendoza-Cano O, Sánchez-Piña RA, Barrón-Quintana J, Cuevas-Arellano HB, Escalante-Minakata P, Solano-Barajas R
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 36
Paginas: 34-40
Archivo PDF: 383.47 Kb.


PALABRAS CLAVE

agua subterránea, arsénico, cáncer.

RESUMEN

Objetivo. Estimar los riesgos potenciales de salud debidos a la ingestión crónica de arsénico (As) en agua en Colima, México. Material y métodos. Se muestrearon aleatoriamente 36 pozos en 10 acuíferos locales. El análisis se hizo mediante ICP-OES siguiendo estándares internacionales. Se realizó una interpolación geoestadística con ArcGIS, implementando un modelo de ponderación del inverso de la distancia, para estimar la ruta de exposición de consumo en cada localidad. Se calcularon los coeficientes de peligro (HQ) y riesgo carcinogénico (R). Resultados. El HQ promedio ponderado de As para Colima es 2.41. Existen valores de HQ›1 para As que indican efectos adversos no carcinogénicos para la salud por ingestión continua y prolongada de agua; esto podría afectar a 183 832 individuos en el estado. El riesgo calculado de desarrollar cáncer debido a las concentraciones de arsénico en aguas subterráneas (R) es de 1.089E-3; estadísticamente esto podría ocasionar 446 casos de cáncer. Conclusiones. Los niveles actuales de arsénico en el agua de pozo incrementan los riesgos carcinogénicos y no carcinogénicos de salud humana en Colima.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Cantor KP. Drinking water and cancer. Cancer Causes Control 1997;8(3):292-308. http://doi.org/fgddcq

  2. Calderón RL. The epidemiology of chemical contaminants of drinking water. Food Chem Toxicol 2000;38(1 Suppl):S13-S20. http://doi.org/ bhchw8

  3. Varela J, López L, Montiel A. El arsénico y sus riesgos Ruta Crítica 2008;20:46 [consultado el 22 de noviembre de 2013]. Disponible en: http://www.revistauniversidad.uson.mx/revistas/20-20articulo%2013.pdf

  4. Thomann RV. Physio-chemical and ecological modeling the fate of toxic substances in natural water systems. Ecol Model 1984;22:145-170. http:// doi.org/frj4vm

  5. Dogan M, Dogan AU, Celebi C, Baris YI. Geogenic arsenic and a survey of skin lesions in the Emet region of Kutahya, Turkey. Indoor Built Environ 2005;14(6):533-536. http://doi.org/dv3grk

  6. Cui Y, Zhu Y, Zhai R, Huang Y, Chen D, Huang Y. Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China. Environ Int 2004;30(6):785-791. http://doi.org/bg3jcb

  7. Cui Y, Zhu Y, Zhai R, Huang Y, Qiu Y, Liang J. Exposure to metal mixtures and human health impacts in a contaminated area in Nanning, China. Environ Int 2005;31(6):784-790. http://doi.org/bjvw7j

  8. Shan Y, Tysklind M, Hao F, Ouyang W, Chen S, Lin C. Identification of sources of heavy metals in agricultural soils using multivariate analysis and GIS. J Soils Sediments 2013; 13(4):720-729. http://doi.org/f23q99

  9. Poggio L, Vrščaj B. A GIS-based human health risk assessment for urban green space planning, an example from Grugliasco (Italy). Sci Total Environ 2009; 407(23):5961-5970. http://doi.org/fr85g2

  10. Liyuan C, Zhenxing W, Yunyan W, Zhihui Y, Haiying W, Xie W. Ingestion risks of metals in groundwater based on TIN model and dose-response assessment —A case study in the Xiangjiang watershed, central-south China. Sci Total Environ 2010;408(16):3118-3124. http://doi.org/d585nv

  11. Comisión Nacional del Agua (Conagua). Estadísticas del agua en México. Ciudad de México: Secretaria del Medio Ambiente y Recursos Naturales, 2011.

  12. Mahlknecht J, López-Zavala MA. Reporte técnico final del proyecto Evaluación diagnóstica de la calidad y disponibilidad del agua superficial y subterránea en el Estado de Colima. Conacyt. Número: 164. México. Abril. [2008-37881].

  13. O’Rourke MK, Van de Water PK, Jin S, Rogan SP, Weiss AD, Gordon SM, Moschandreas DJ, Lebowitz MD. Evaluations of primary metals from NHEXAS Arizona: distributions and preliminary exposures. J Expo Anal Environ Epidemiol 1999;9(5):435-445. http://doi.org/dq7j39

  14. Consejo Nacional de Población (Conapo). Colima: Indicadores demográficos, 2010-2030, 2015.

  15. Secretaría de Salud (SSA). Norma Oficial Mexicana NOM-127- SSA1-1994. Salud ambiental, agua para uso y consumo humano-límites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización. México: Diario Oficial de la Federación, 30 de noviembre de 1995.

  16. US Environmental Protection Agency (USEPA). Guidelines for exposure assessment. Washington, DC: USEPA, 1992.

  17. Instituto Nacional de Estadística y Geografía. Marco geoestadístico nacional. México: INEGI, 2010 [consultado en octubre de 2013]: Disponible en: http://www.inegi.org.mx/geo/contenidos/geoestadistica/m_geoestadistico. aspx

  18. Hossain M, Piantanakulchai M. Groundwater arsenic contamination risk prediction using GIS and classification tree method. Eng Geol 2013;156:37-45. http://doi.org/bqsq

  19. Secretaría de Salud (SSA). Norma Oficial Mexicana NOM-014- SSA1-1993. Procedimientos sanitarios para el muestreo de agua para uso y consumo humano en sistemas de abastecimiento de agua públicos y privados. México: Diario Oficial de la Federación, 12 de agosto de 1994.

  20. US Environmental Protection Agency (USEPA). Integrated Risk Information System (IRIS). Washington DC: USEPA, 2007 [consultado el 3 de octubre de 2013]. Disponible en: www.epa.gov/iris

  21. Organización Mundial de la Salud (OMS). Guías para la calidad del agua potable. Ginebra: OMS, 2006 [consultado el 25 de noviembre de 2013]. Disponible en: http://www.who.int/water_sanitation_health/dwq/ gdwq3_es_fulll_lowsres.pdf

  22. Organización Mundial de la Salud. Arsénico. Ginebra: OMS, 2012 [consultado el 24 de noviembre de 2013]. Disponible en: http://www.who. int/mediacentre/factsheets/fs372/es/

  23. Hurtado-Jiménez R, Gardea-Torresdey J. Estimación de la exposición a fluoruros en Los Altos de Jalisco, México. Salud Publica Mex 2005;47(1): 58-63. http://doi.org/fq9p8j

  24. Chrostowski PC. Exposure assessment principles. En: Patrick DR, ed. Toxic air pollution handbook. New York: Van Nostrand Reinhold, 1994.

  25. Phan K, Stiannopkao S, Kim KW, Wong MH, Sao V, Hashim JH, et al. Health risk assessment of inorganic arsenic intake of Cambodia residents though groundwater drinking pathway. Water Res 2010;44(19):5777-5788. http://doi.org/fhvvcc

  26. Nakaya S, Natsume H, Masuda H, Mitamura M, Biswas DK, Seddique AA. Effect of groundwater flow on forming arsenic contaminated groundwater in Sonargaon, Bangladesh. J Hydrol 2011;409(3):724-736. http://doi. org/czb8t3

  27. Kavcar P, Sofuoglu A, Sofuoglu SC. A health risk assessment for exposure to trace metals via drinking water ingestion pathway. Int J Hyg Environ Health 2009;212(2):216-227. http://doi.org/bgd35d

  28. US Department of Health and Human Services (HHS). Toxicological profile for lead. :HHS, 2007 [consultado el 26 de noviembre de 2013]. Disponible en: http://www.atsdr.cdc.gov/toxprofiles/tp13.pdf

  29. Patrick DR. Risk assessment and risk management. En: Patrick DR (Ed). Toxic Air Pollution Handbook. New York: Van Nostrand Reinhold, 1994.

  30. Rodriguez-Lado L, Sun G, Berg M, Zhang Q, Xue H, Zheng Q, Johnson C. Groundwater arsenic contamination throughout China. Science 2013;341(6148):866-868. http://doi.org/nkx

  31. Fendorf S, Michael HA, Van Geen A. Spatial and temporal variations of groundwater arsenic in south and Southeast Asia. Science 2010;328(5982):1123-1127. http://doi.org/bng4jz

  32. Huaming G, Chen L, Hai L, Wanty RB, Jun W, Yinzhu Z. Pathways of coupled arsenic and iron cycling in high arsenic groundwater of the Hetao basin, Inner Mongolia, China: An iron isotope approach. Geochim Cosmochim Acta 2013; 112:130-145. http://doi.org/bqsr

  33. Rahman MM, Bakker M, Patty CH, Hassan Z, Röling WF, Ahmed KM, Van Breukelen BM. Reactive transport modeling of subsurface arsenic removal systems in rural Bangladesh. Sci Total Environ 2015; 537:277-293. http://doi.org/bqss

  34. Flores OJ, Nava JL, Carreño G, Elorza E, Martínez F. Arsenic removal from groundwater by electrocoagulation in a pre-pilot-scale continuous filter press reactor. Chem Eng Sci 2013;97:1-6. http://doi.org/bqst

  35. Lanhai L, de Dieu H, John M. Plant algae method for arsenic removal from arsenic contaminated groundwater. Water Sci Technol 2012;65(5):927-931. http://doi.org/bqsv

  36. Pham Q, Giang KN, Achara U. Effectiveness of different spatial interpolators in estimating heavy metal contamination in shallow groundwater: a case study of arsenic contamination in Hanoi, Vietnam. Environment and Natural Resources 2011;9(1):31-37.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

salud publica mex. 2017;59

ARTíCULOS SIMILARES

CARGANDO ...