Entrar/Registro  
INICIO ENGLISH
 
Revista Mexicana de Anestesiología
   
MENÚ

Contenido por año, Vol. y Num.

Índice de este artículo

Información General

Instrucciones para Autores

Mensajes al Editor

Directorio






>Revistas >Revista Mexicana de Anestesiología >Año 2017, No. S1


Motta-Amézquita LG, Barrera-Fuentes M, Peña-Pérez CA, Tamaríz-Cruz O, Ramírez-Segura EH, Cabrera-Galindo F
Monitorización de oxigenación tisular
Rev Mex Anest 2017; 40 (S1)

Idioma: Español
Referencias bibliográficas: 105
Paginas: 350-364
Archivo PDF: 303.25 Kb.


Texto completo




FRAGMENTO

Es bien sabido que una intervención quirúrgica echa a andar de manera inmediata la respuesta metabólica al trauma, caracterizada por la liberación de hormonas, aumento de liberación de cortisol, resistencia a la insulina, aumento de catecolaminas, inmunodepresión, proteólisis, etc. y un consecuente aumento del consumo de oxígeno tisular, lo que aumenta importantemente el riesgo quirúrgico y la morbimortalidad perioperatoria. También está demostrado que una rápida recuperación del déficit de oxígeno mediante una oportuna GDT (antes de que se establezca una falla orgánica), reduce la morbimortalidad, de modo que la optimización hemodinámica debe iniciarse en el transoperatorio para prevenir la hipo perfusión tisular y debería continuarse por al menos entre 6 y 8 horas en el postoperatorio. No obstante, es bien sabido que no todos los pacientes son capaces de sobreponerse a una «deuda» de oxígeno, esto puede ser debido al tipo de cirugía y al daño tisular secundario aunado a las reservas fisiológicas de cada paciente.


Palabras clave: Sin palabras Clave


REFERENCIAS

  1. Cecconi M, Corredor C, Arulkkumaran N, Abuella G, Ball J, Grounds RM, et al. Clinical review: goal directed therapy-what is the evidence in surgical patients? The effect on different risk groups. Crit Care. 2013;17:209.

  2. Hamilton MA, Cecconi M, Rhodes A. A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg. 2011;112:1392-1402.

  3. Dalfino G, Giglio MT, Puntillo F, Marucci M, Brienza N. Haemodynamic goal-directed therapy and postoperative infections: earlier is better. A systematic review and meta-analysis. Crit Care. 2011;15:R154.

  4. Gurgel ST, do Nascimento P Jr. Maintaining tissue perfusion in high-risk surgical patients: a systematic review and randomized clinical trials. Anesth Analg. 2011;112:1384-1391.

  5. Carsetti A, Watson X, Cecconi M. Hemodynamic coherence in perioperative setting. Best Practice & Research Clinical Anaesthesiology. 2016;30:445-452. doi: 10.1016/j.bpa.2016.10.007.

  6. Grocott MP, Dushianthan A, Hamilton MA, Mythen MG, Harrison D, Rowan K. Perioperative increase in global blood flow to explicit defined goals and outcomes after surgery: a Cochrane Systematic Review. Br J Anaesth. 2013;111:538-548.

  7. Weiser TG, Regenbogen SE, Thompson KD, Haynes AB, Lipsitz SR, Berry WR, et al. An estimation of the global volume of surgery: a modeling strategy based on available data. Lancet. 2008;372:139-144.

  8. Pearse RM, Moreno RP, Bauer P, Pelosi P, Metnitz P, Spies C, et al. Mortality after surgery in Europe: a 7 day cohort study. European Surgical Outcomes Study (EuSOS) group for the Trials groups of the European Society of Intensive Care Medicine and the European Society of Anesthesiology. Lancet. 2012;380:1059-1065.

  9. Ghaferi AA, Birkmeyer JD, Dimick JB. Variation in hospital mortality associated with inpatient surgery. N Engl J Med. 2009;361:1368-1375.

  10. Khuri SF, Henderson WG, DePalma RG, Mosca C, Healey NA, Kumbhani DJ: Participants in the VA National Surgical Quality Improvement Program Determinants of long-term survival after major surgery and the adverse effect of postoperative complications. Ann Surg. 2005;242:326-341.

  11. Jacobs DO. Variation in hospital mortality associated with inpatient surgery - an SOS. N Engl J Med. 2009;361:1398-1400.

  12. Gurgel ST, do Nascimento P Jr. Maintaining tissue perfusion in high-risk surgical patients: a systematic review and randomized clinical trials. Anesth Analg. 2011;112:1384-1391.

  13. Jhanji S, Thomas B, Ely A, Watson D, Hinds CJ, Pearse RM. Mortality and utilization of critical care resources amongst high-risk surgical patients in a large NHS trust. Anaesthesia. 2008;63:695-700.

  14. Shoemaker WC, Appel PL, Bland R, Hopkins JA, Chang P. Clinical trial of an algorithm for outcome prediction in acute circulatory failure. Crit Care Med. 1982;10:390-397.

  15. Shoemaker WC, Appel PL, Waxman K, Schwartz S, Chang P. Clinical trial of survivors’ cardiorespiratory patterns as therapeutic goals in critically ill postoperative patients. Crit Care Med. 1982;10:398-403.

  16. Shoemaker WC, Appel PL, Kram HB. Tissue oxygen debt as a determinant of lethal and nonlethal postoperative organ failure. Crit Care Med. 1988;16:1117-1120.

  17. Rhodes A, Cecconi M, Hamilton M, Poloniecki J, Woods J, Boyd O, et al. Goal-directed therapy in high-risk surgical patients: a 15-year follow-up study. Intensive Care Med. 2010;36:1327-1332.

  18. Lindahl SG. Energy expenditure and fluid and electrolyte requirements in anesthetized infants and children. Anesthesiology. 1988;69:377-382.

  19. Marik PE, Kauffman D. The effects of neuromuscular paralysis on systemic and splanchnic oxygen utilization in mechanically ventilated patients. Chest. 1996;109:1038-1042.

  20. Bacher A, Illevich UM, Fitzgerald R, Ihra G, Spiss CK. Changes in oxygenation variables during progressive hypothermia in anesthetized patients. J Neurosurg Anesthesiol. 1997;9:205-210.

  21. Sessler DI. Temperature monitoring and perioperative thermoregulation. Anesthesiology. 2008;109:318-338.

  22. Shepherd SJ, Pearse RM. Role of central and mixed venous oxygen saturation measurement in perioperative care. Anesthesiology. 2009;111:649-656.

  23. Collaborative Study Group on Perioperative ScvO2 Monitoring. Multi-center study on peri- and postoperative central venous oxygen saturation in high-risk surgical patients. Crit Care. 2006;10:R158.

  24. Futier E, Robib E, Jabaudon M, Guerin R, Petit A, Bazin JE, et al. Central venous O2 saturation and venous-to-arterial CO2 difference as complementary tools for goal-directed therapy during high-risk surgery. Crit Care. 2010;14:R193.

  25. Pears R, Dawson D, Fawcett J, Rhodes A, Grounds RM, Bennett ED. Changes in central venous saturation after major surgery, and association with outcome. Crit Care. 2005;9:R694-699.

  26. Salzwedel C, Puig J, Carstens A, Bein B, Molnar Z, Kiss K, et al. Perioperative goal-directed hemodynamic therapy based on radial arterial pulse pressure variation and continuous cardiac index trending reduces postoperative complications after major abdominal surgery: a multi-center, prospective, randomized study. Crit Care. 2013;17:R191.

  27. Marik PE. Noninvasive cardiac output monitors: a state-of-the-art review. J Cardiothorac Vasc Anesth. 2013;27:121-134.

  28. Walsh M, Devereaux PJ, Garg AX, Kurz A, Turan A, Rodseth RN, et al. Relationship between intraoperative mean arterial pressure and clinical outcomes after noncardiac surgery: toward an empirical definition of hypotension. Anesthesiology. 2013;119:507-515.

  29. Chawla LS, Zia H, Gutierrez G, Katz NM, Seneff MG, Shah M. Lack of equivalence between central and mixed venous oxygen saturation. Chest. 2004;126:1891-1896.

  30. Dueck MH, Klimek M, Apprenrodt S, Weigand C, Boerner U. Trends but not individual values of central venous oxygen saturation agree with mixed venous oxygen saturation during varying hemodynamic conditions. Anesthesiology. 2005;103:249-257.

  31. Reinhart K, Rudolph T, Bredle DL, Hannemann L, Cain SM. Comparison of central-venous to mixed-venous oxygen saturation during changes in oxygen supply/demand. Chest. 1989;95:1216-1221.

  32. Lorentzen AG, Lindskov C, Sloth E, Jakobsen CJ. Cenral venous oxygen saturation cannot replace mixed venous saturation in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 2008;22:853-857.

  33. Glamann DB, Lange RA, Hillis LD. Incidence and significance of a “step-down” in oxygen saturation from superior cava to pulmonary artery. Am J Cardiol. 1991;68:695-697.

  34. Barratt-Boyes BG, Wood EH. The oxygen saturation of blood in the venae cava, right-heart, chambers, and pulmonary vessels of healthy subjects. J Lab Clin Med. 1957;50:93-106.

  35. Dahn MS, Lange MP, Jacobs LA. Central mixed and splanchnic venous oxygen saturation monitoring. Intensive Care Med. 1988;14:373-378.

  36. Lee J, Wright F, Barber R, Stanley L. Central venous oxygen saturation in shock: a study in man. Anesthesiology. 1972;36:472-478.

  37. Ho KM, Harding R, Chamberlain J, Bulsara M. A comparison of central and mixed venous oxygen saturation in circulatory failure. J Cardiothorac Vasc Anesth. 2010;24:434-439.

  38. Turnaoglu S, Tugrul M, Camci E, Cakar N, Akinci O, Ergin P. Clinical applicability of the substitution of mixed venous oxygen saturation with central venous oxygen saturation. J Cardiothorac Vasc Anesth. 2001;15:574-579.

  39. Reinhart K, Kersting T, Fohring U, Schafer M. Can central-venous replace mixed-venous oxygen saturation measurements during anesthesia? Adv Exp Med Biol. 1986;200:67-72.

  40. Polonen P, Roukonen E, Hippelainen M, Poyhonen M, Takala J. A prospective, randomized study of goal-oriented hemodynamic therapy in cardiac surgical patients. Anesth Analg. 2000;90:1052-1059.

  41. Donatu A, Loggi S, Preiser JC, Orsetti G, Munch C, Gabbanelli V, et al. Goal-directed intraoperative therapy reduces morbidity and length of hospital stay in high-risk surgical patients. Chest. 2007;132:1817-1824.

  42. Van der Linden P, Schmartz D, Gilbart E, Engelman E, Vincent JL. Effects of propofol, etomidate, and pentobarbital on critical oxygen delivery. Crit Care Med. 2000;28:2492-2499.

  43. Perz S, Uhlig T, Kohl M, Bredle DL, Reinhart K, Bauer M, et al. Low and “supranormal” central venous oxygen saturation and markers of tissue hypoxia in cardiac surgery patients: a prospective observational study. Intensive Care Med. 2011;37:52-59.

  44. Bakker J, Gris P, Coffernils M, Kahn RJ, Vincent JL. Serial blood lactate levels can predict the development of multiple organ failure following septic shock. Am J Surg. 1996;171:221-226.

  45. Smith I, Kumar P, Molloy S, Rhodes A, Newman PJ, Grounds RM, Bennett ED. Base excess and lactate as prognostic indicators for patients admitted to intensive care. Intensive Care Med. 2001;27:74-83.

  46. Blow O, Magliore L, Claridge JA, Butler K, Young JS. The golden hour and the silver day: detection and correction of occult hypo perfusion within 24 hours improves outcome from major trauma. J Trauma. 1999;47:964-969.

  47. Meregalli A, Oliceira RP, Friedman G. Occult hypo perfusion is associated with increased mortality in hemodynamically stable, high risk, surgical patients. Crit Care. 2004;8:R60-R65.

  48. Howell M, Donnino M, Clardy P, Talmor D, Shapiro N. Occult hypo perfusion and mortality in patients with suspected infection. Intensive Care Med 2007. doi. 10.1007/s00134-007-0680-5.

  49. Lavery RF, Livingston DH, Tortella BJ, Sambol JT, Slomovitz BM, Siegel JH. The utility of venous lactate to triage injured patients in the trauma center. J Am Coll Surg. 2000;190:656-664.

  50. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knobblich B, Peterson E, Tomlanovich M. Early goal directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368-1377.

  51. Hucker TR, Mitchell GP, Grocutt M, Forni LG, Venn RM. Identifying the sick; can biochemical measurements be used to aid decision making on presentation to the accident and emergency department. Br J Anaesth. 2005;94:735-741.

  52. Vincent JL, Dufaye P, Kahn RJ. Serial lactate determinations during circulatory shock. Crit Care Med. 1983;11:449-451.

  53. Nguyen HB, Rivers EP, Knoblich BP, Jacobsen G, Muzzin A, Ressler JA, Tomlanovich MC. Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit care Med. 2004;32:1637-1642.

  54. Brinkert W, Rommes JH, Bakker J. Lactate measurements in critically ill patients with a hand-held analyzer. Intensive Care Med. 1999;25:966-969.

  55. De Backer D, Zhang H, Vincent JL. Models to study the relation between oxygen consumption and oxygen delivery during an acute reduction in blood flow: comparison of balloon filling in the inferior vena cava, tamponed, and hemorrhage. Shock. 1995;4:107-112.

  56. Ronco JJ, Fenwick JC, Tweeddale MG, Wiggs BR, Phang PT, Cooper DJ, Cunningham KF, Russell JA, Walley KR. Identification of the critical oxygen delivery for anaerobic metabolism in critically ill septic and nonseptic humans. JAMA. 1993;270:1724-1730.

  57. Haji-Michael PG, Ladriere L, Sener A, Vincent JL, Malaisse WJ. Leukocyte glycolysis and lactate output in animal sepsis and ex vivo human blood. Metabolism. 1999;48:779-785.

  58. Levy B, Gibot S, Franck P, Cravoisy A, Bollaert PE. Relation between muscle Na+K+ ATPase activity and raised lactate concentrations in septic shock: a prospective study. Lancet. 2005;365:871-875.

  59. Vary TC. Sepsis-induced alterations in pyruvate dehydrogenase complex activity in rat skeletal muscle: effects on plasma lactate. Shock. 1996;6:89-94.

  60. Iscra F, Gullo A, Biolo G. Bench-to-bedside review: lactate and the lung. Crit Care. 2002;6:327-329.

  61. Routsi C, Vincent JL, Bakker J, De Backer D, Lejeune P, Hollander A, Le Clerc JL, Kahn RJ. Relation between oxygen consumption and oxygen delivery in patients after cardiac surgery. Anesth Analg. 1993;77:1104-1110.

  62. Friedman G, De Backer D, Shahla M, Vincent JL. Oxygen supply dependency can characterize septic shock. Intensive Care Med. 1998;24:118-123.

  63. Rossi AF, Khan DM, Hannan R, Bolivar J, Zaidenweber M, Burke R. Goal-directed medical therapy and point-of-care testing improve outcomes after congenital heart surgery. Intensive Care Med. 2005;31:98-104.

  64. Ince C. The microcirculation is the motor of sepsis. Crit Care. 2005;9:S13-S19.

  65. De Backer D, Creteur J, Dubois MJ, Sakr Y, Koch M, Verdant C, Vincent JL. The effects of dobutamine on microcirculatory alterations in patients with septic shock are independent of its systemic effects. Crit Care Med. 2006;34:403-408.

  66. Carlson KA, Jahr JS. A historical overview and update on pulse oximetry. Anesthesiol Rev. 1993;20:173-181.

  67. Severinghaus JW, Astrup PB. History of blood gas analysis. VI. Oximetry J Clin Monit. 1986;2:270-288.

  68. Merry AF, Cooper JB, Soyannwo O, Wilson IH, Eichhorn JH. International Standars for a Safe Practice of Anesthesia 2010. Can J Anesth. 2010;57:1027-1034.

  69. World Alliance for Patient Safety. WHO guidelines for safe surgery. Geneva: World Health Organization. 2008.

  70. Barker SJ, Tremper KK. Pulse oximetry: applications and limitations. Int Anesthesiol Clin. 1987;25:155-175.

  71. Bowes WA, Corke BC, Hulka J. Pulse oximetry: a review of the theory, accuracy, and clinical applications Obstet Gynecol. 1989;74:541-546.

  72. Chittock DR, Ronco J, Russell JA. In: Tobin MJ. Monitoring of oxygen transport and oxygen consumption. Principles and Practice of Intensive Care Monitoring. Edit McGraw-Hill 1998, pp. 317-343.

  73. Ghayumi SM, Khalafi­Nezhad A, Jowkar Z. Pulse oximeter oxygen saturation in prediction of arterial oxygen saturation in liver transplant candidates. Hepat Mon. 2014;14:e15449 pmid:24748894

  74. Dubowitz G, Breyer K. Accuracy of the life box pulse oximeter during hypoxia in healthy volunteers. Anaesthesia. 2013;68:1220-1223.

  75. Jones JG, Jones SE. Discriminating between the effect of shunt and reduced VA/Q on arterial oxygen saturation is particularly useful in clinical practice. J Clin Monit Comput. 2000;16:337-350.

  76. Sapsford DJ, Jones JG. The PIO2 vs. SpO2 diagram: a noninvasive measure of pulmonary oxygen exchange. Eur J Anaesthesiol. 1995;12:375-386.

  77. Cannesson M, Attof Y, Rosamel P, Desebbe O, Joseph P, Metton O, Bastien O, Lehot JJ. Respiratory variations in pulse oximetry plethysmographic waveform amplitude to predict fluid responsiveness in the operating room Anesthesiology. 2007;106:1105-1011.

  78. Ochroch EA, Russell MW, Hanson WC. The impact of continuous pulse oximetry monitoring on intensive care unit admissions from a postsurgical care floor. Anesth Analg. 2006;102:868-875.

  79. Gallagher SF, Haines KL. Postoperative hypoxemia: common, undetected, and unsuspected after bariatric surgery. J Surg Res. 2010;159:622-626.

  80. Masip J, Gaya M. Pulsoximetría en el diagnóstico de insuficiencia cardíaca aguda Rev Esp Cardiol. 2012;65:879-884

  81. Yang X, Du B. Does pulse pressure variation predict fluid responsiveness in critically ill patients? A systematic review and meta-analysis. Crit Care. 2014;18:650.

  82. Umbrello M, Formenti P. On-line measurement of systolic pressure variation and pulse pressure variation on a multiparametric monitor. Intensive Care Med. 2008;34:386-387. doi. 10.1007/s00134

  83. Adler JN, Hughes LA. Effect of skin pigmentation on pulse oximetry accuracy in the emergency department. Acad Emerg Med. 1998;5:965-997.

  84. Chan ED, Chan MM. Pulse oximetry: understanding its basic principles facilitates appreciation of its limitations. Respir Med. 2013;107.

  85. Awada WN, Mohmoued MF. Continuous and noninvasive hemoglobin monitoring reduces red blood cell transfusion during neurosurgery: a prospective cohort study. J Clin Monit Comput. 2015;29:733-740.

  86. Pologe JA Statistical assessment of the clinical performance of the Masimo Radical-7 American Journal of Surgery. 2012; 204, 5, 810-810.

  87. Colquhoun DA, Forkin KT. Ability of the Masimo pulse CO-Oximeter to detect changes in hemoglobin. J Clin Monit Comput. 2012;26:69-73.

  88. Bruells CS, Menon AK. Accuracy of the Masimo Pronto-7® system in patients with left ventricular assist device. J Cardiothorac Surg. 2013;8:159.

  89. Malviya S, Reynolds PI. False alarms and sensitivity of conventional pulse oximetry versus the Masimo SET technology in the pediatric postanesthesia care unit. Anesth Analg. 2000;90:1336-1340.

  90. Cannesson M, Desebbe O. Pleth Variability Index to Monitor the Respiratory Variations in the Pulse Oximeter Plethysmographic Waveform Amplitude and Predict Fluid Responsiveness in the Operating Theatre. Br J Anaesth. 2008;101:200-206.

  91. Yu Y, Dong J. Pleth variability index-directed fluid management in abdominal surgery under combined general and epidural anesthesia. J Clin Monit Comput. 2015;29:47-52.

  92. Roth D, Herkner H. Accuracy of noninvasive multiwave pulse oximetry compared with carboxyhemoglobin from blood gas analysis in unselected emergency department patients. Ann Emerg Med. 2011;58:74-79.

  93. Zaouter C, Zavorsky GS. The measurement of carboxyhemoglobin and methemoglobin using a non-invasive pulse CO-oximeter. Respir Physiol Neurobiol. 2012;182:88-92.

  94. Wagner PD. Physiology in respiratory medicine. Eur Respir J. 2015;45:227-243.

  95. Carrillo ÁA. Monitorización de la ventilación mecánica. An Pediatr. 2003;59:252-285.

  96. Jones MB. Basic interpretation of metabolic acidosis. Critical Care Nurse. 2010;30:63-69.

  97. Jöbsis FF. Non invasive, infrared monitoring of cerebral and myocardial sufficiency and circulatory parameters. Science. 1977;198:1264-1267.

  98. Montoya SA, Tamariz-Cruz O. Saturación cerebral regional de oxígeno en adultos sometidos a hipotermia moderada y paro circulatorio. Anest Mex. 1996;8:S268.

  99. Tamariz-Cruz O, Montoya SA. Cambios en la rSO2 obtenidos por oximetría cerebral no invasiva en cirugía laparoscópica. Anest Mex. 1996;8:S279.

  100. Tamariz-Cruz O, Palacios-Macedo AJ, Bouchan-Ramírez Y, Motta-Amézquita LG, Barrera-Fuentes M. Manejo de falla cardíaca transoperatoria. Reporte de un caso de corrección de enfermedad de Taussig-Bing mediante switch arterial. Énfasis en el empleo de levosimendan en pediatría y vigilancia neuroesplácnica. Rev Mex Anest. 2008;31:206-214.

  101. Ghanayem NS, Wernovsky G. Near-infrared spectroscopy as a hemodynamic monitor in critical illness. Pediatr Crit Care Med. 2011;12:S27.

  102. The Pediatric Cardiac Intensive Care Society Evidence-Based Review and Consensus Statement on Monitoring of Hemodynamics and Oxygen Transport Balance. Pediatr Crit Care Med. 2011;12:S1-S102.

  103. Bledrzycka A, Lango R. Tissue oximetry in anaesthesia and intensive care. Anaesthesiology Intensive Therapy. 2016;48:41-48.

  104. Avery EG. Cerebral oximetry: A first alert indicador of adverse outcomes. http://www.surgicalproductsmag.com/scripts/showPIR-PUBCODE-0S0-ACCT- 000100-ISSUE-1010-REALTYPE-FEA-PRODCODE-0000-PRODLETT-Hcasp.

  105. Nelson DP, Andropoulos DB. Perioperative neuroprotective strategies. Semin Thorax Cardiovasc Surg Pediatr Card Surg Annu. 2008;49-56.



>Revistas >Revista Mexicana de Anestesiología >Año2017, No. S1
 

· Indice de Publicaciones 
· ligas de Interes 






       
Derechos Resevados 2019