medigraphic.com
ENGLISH

Medicina Interna de México

Colegio de Medicina Interna de México.
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2017, Número 3

<< Anterior Siguiente >>

Med Int Mex 2017; 33 (3)


Diferencia sodio-cloro e índice cloro/sodio como predictores de mortalidad en choque séptico

Cortés-Román JS, Sánchez-Díaz JS, García-Méndez RC, Martínez-Rodríguez EA, Peniche-Moguel KG, Díaz-Gutiérrez SP, Pin-Gutiérrez E, Rivera-Solís G, Huanca-Pacaje JM, Castañeda-Balladares E, Calyeca-Sánchez MV
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 33
Paginas: 335-343
Archivo PDF: 445.01 Kb.


PALABRAS CLAVE

choque séptico, hipercloremia, mortalidad, unidad de cuidados intensivos.

RESUMEN

Antecedentes: la hipercloremia es la causa más frecuente de acidosis metabólica en pacientes en estado crítico. La diferencia sodio-cloro (Na+-Cl–) y el índice cloro/sodio (Cl–/Na+) pueden valorar de manera simple el papel de la hipercloremia en las alteraciones ácido-base.
Objetivo: determinar si la diferencia sodio-cloro y el índice cloro/sodio medidos a las 24 horas de ingreso son predictores de mortalidad a 30 días en pacientes con choque séptico.
Material y Método: estudio de cohorte prospectivo, longitudinal, descriptivo y analítico. Se incluyeron los pacientes con diagnóstico de choque séptico según las Guías de la Campaña Sobreviviendo a la Sepsis del año 2012, ingresados a la Unidad de Cuidados Intensivos en el periodo comprendido de junio del 2015 a junio de 2016.
Resultados: el análisis multivariado mostró que la diferencia Na+-Cl– menor de 31 mEq/L incrementa el riesgo de muerte en los pacientes con choque séptico a 30 días, OR 15.26 (IC95% 1.56-148.49) p=0.019.
Conclusiones: la disminución de la diferencia Na+-Cl– por debajo de 31 mEq/L condicionada por hipercloremia incrementa el riesgo de muerte a 30 días en el paciente con choque séptico.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Angus DC, Van der Poll T. Severe sepsis and septic shock. N Engl J Med 2013;369(9):840-51.

  2. Dellinger RP, Levy MM, Rhodes A, et al. Surviving Sepsis Campaign Guidelines Committee including the Pediatric Subgroup: Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock 2012. Crit Care Med 2013;41:580-637.

  3. Murray CJ, Atkinson C, Bhalla K, et al. US Burden of Disease Collaborators. The state of US health, 1990-2010: burden of diseases, injuries, and risk factors. JAMA. 2013;310(6):591-608.

  4. Torio CM, Andrews RM. National Inpatient Hospital Costs: The Most Expensive Conditions by Payer, 2011. Statistical Brief #160. Healthcare Cost and Utilization Project (HCUP) Statistical Briefs. August 2013. http://www.ncbi.nlm.nih. gov/books /NBK169005/. Accessed October 31, 2015.

  5. Mecher C, Rackow EC, Astiz ME, et al. Unaccounted for anion in metabolic acidosis during severe sepsis in humans. Crit Care Med 1991;19(5):705-11.

  6. O’Dell E, Tibby SM, Durward A, et al. Hyperchloremia is the dominant cause of metabolic acidosis in the postresuscitation phase of pediatric meningococcal sepsis. Crit Care Med 2007;35(10):2390-4.

  7. Park M, Azevedo LC, Maciel AT, et al. Evolutive standard base excess and serum lactate level in severe sepsis and septic shock patients resuscitated with early goal-directed therapy: Still outcome markers? Clinics 2006;61(1):47-52.

  8. Smith I, Kumar P, Molloy S, et al. Base excess and lactate as prognostic indicators for patients admitted to intensive care. Intensive Care Med 2001;27(1):74-83.

  9. Gunnerson KJ, Saul M, He S, et al. Lactate versus non-lactate metabolic acidosis: a retrospective outcome evaluation of critically ill patients. Crit Care 2006;10(1):R22.

  10. Gunnerson KJ. Clinical review: the meaning of acid-base abnormalities in the intensive care unit part I—epidemiology. Crit Care 2005;9(5):508-16.

  11. Maciel AT, Park M. Differences in acid-base behavior between intensive care unit survivors and nonsurvivors using both a physicochemical and a standard base excess approach: a prospective, observational study. J Crit Care 2009;24(4):477-83.

  12. Noritomi DT, Soriano FG, Kellum JA et al. Metabolic acidosis in patients with severe sepsis and septic shock: a longitudinal quantitative study. Crit Care Med 2009;37(10):2733-9.

  13. Stewart PA. Modern quantitative acid-base chemistry. Can J Physiol Pharmacol 1983;61(12):1444-61.

  14. Story DA. Hyperchloraemic acidosis: another misnomer? Crit Care Resusc 2004;6(3):188-92.

  15. Kellum JA. Fluid resuscitation and hyperchloremic acidosis in experimental sepsis: Improved short-term survival and acid-base balance with Hextend compared with saline. Crit Care Med 2002;30(2):300-5.

  16. Kellum JA, Song M, Almasri E. Hyperchloremic acidosis increases circulating inflammatory molecules in experimental sepsis. Chest 2006;130(4):962-7.

  17. Yunos NM, Bellomo R, Hegarty C, et al. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically Ill adults. JAMA 2012;308(15):1566-72.

  18. Kellum JA, Song M, Li J. Lactic and hydrochloric acids induce different patterns of inflammatory response in LPS-stimulated RAW 264.7 cells. Am J Physiol Regul Integr Comp Physiol 2004;286(4):R686-92.

  19. Durward A, Skellett S, Mayer A, et al. The value of the chloride: sodium ratio in differentiating the etiology of metabolic acidosis. Intensive Care Med 2001;27(5):828- 35.

  20. Gunnerson KJ, Kellum JA. Acid-base and electrolyte analysis in critically ill patients: are we ready for the new millennium? Curr Opin Crit Care 2003;9(6):468-73.

  21. Sirker AA, Rhodes A, Grounds RM, et al. Acid-base physiology: the “traditional” and the “modern” approaches. Anaesthesia 2002;57(4):348-56.

  22. Cecconi M, De Backer D, Antonelli M, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med 2014;40:1795-1815.

  23. Gunnerson KJ, Saul M, Kellum JA. Lactic versus non-lactic metabolic acidosis: outcomes in critically ill patients. Abstract. Crit Care 2003;7(Suppl 2):S8-S9.

  24. Durward A, Murdoch I. Understanding acid--base balance. Current Pediatrics 2003;13:513-19.

  25. Kaplana LJ, Kellum JA. Fluids, pH, ions and electrolytes. Current Opinion in Critical Care 2010;16(4):323-33.

  26. Handy JM, Soni N. Physiological effects of hyperchloraemia and acidosis. Br J Anaesth 2008;101(2):141-50.

  27. Shaw AD, Raghunathan K, Peyerl FW, et al. Association between intravenous chloride load during resuscitation and in-hospital mortality among patients with SIRS. Intensive Care Med 2014;40(12):1897-1905.

  28. Eisenhut M. Causes and effects of hyperchloremic acidosis. Critical Care 2006;10(3):413.

  29. Kellum JA, Song M, Venkataraman R. Effects of hyperchloremic acidosis on arterial pressure and circulating inflammatory molecules in experimental sepsis. Chest 2004;125(1):243-8.

  30. Krajewski ML, Raghunathan K, Paluszkiewicz MS, et al. Meta-analysis of high- versus low-chloride content in perioperative and critical care fluid resuscitation. Br J Surg 2015;102(1):24-36.

  31. McCluskey SA, Karkouti K, Wijeysundera D, et al. Hyperchloremia after noncardiac surgery is independently associated with increased morbidity and mortality: A propensitymatched cohort study. Anesth Analg 2013;117(2):412-21.

  32. Nagaoka D, Nassar AP, Toledo A, et al. The use of sodiumchloride difference and chloride-sodium ratio as strong ion difference surrogates in the evaluation of metabolic acidosis in critically ill patients. J Crit Care 2010;25(3):525-3.

  33. Kotake Y. Unmeasured anions and mortality in critically ill patients in 2016. J Intensive Care 2016;4:45.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Med Int Mex. 2017;33

ARTíCULOS SIMILARES

CARGANDO ...