medigraphic.com
ENGLISH

Salud Pública de México

Instituto Nacional de Salud Pública
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2017, Número 5

<< Anterior Siguiente >>

salud publica mex 2017; 59 (5)


Micronúcleos y anormalidades nucleares en población indígena de México

Lazalde-Ramos BP, Zamora-Pérez AL, Sosa-Macías M, Galaviz-Hernández C, Zúñiga-González GM
Texto completo Cómo citar este artículo Artículos similares

Idioma: Ingles.
Referencias bibliográficas: 40
Paginas: 532-539
Archivo PDF: 749.76 Kb.


PALABRAS CLAVE

micronúcleos, anormalidades nucleares, población indígena, ADN.

RESUMEN

Objetivo. Determinar el número de micronúcleos y anomalías nucleares en la población indígena de México. Material y métodos. Se evaluó a ciento veinte indígenas, incluyendo treinta individuos de las etnias cora, huichol, tarahumara y tepehuana. A cada participante se le determinó el número de micronúcleos (MN) y de alguna anomalía nuclear (AN) en células de mucosa bucal, incluyendo células con brotes nucleares, binucleadas, cariolisis, cariorrexis, cromatina condensada y picnóticas. Resultados. Los tepehuanos y tarahumaras mostraron el mayor daño al ADN. El grupo tepehuano presentó el mayor número de MN y AN, con una diferencia significativa (p ‹ 0.05) en comparación con el resto de los grupos estudiados; este grupo presentó también la mayor exposición a herbicidas (46.7%). En relación con los hábitos de fumar y beber, se presentaron con mayor frecuencia en el grupo tarahumara (33.3 y 50%, respectivamente). Conclusión. La diversidad étnica, hábitos y costumbres pueden influir la integridad del ADN en los grupos amerindios.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Ishikawa H, Tian Y, Yamauchi T. Influence of gender, age and lifestyle factors on micronuclei frequency in healthy Japanese populations. J Occup Health 2003;45(3):179-181. https://doi.org/10.1539/joh.45.179

  2. Fenech M, Holland N, Zeiger E, Chang WP, Burgaz S, Thomas P, et al. The HUMN and HUMNxL international collaboration projects on human micronucleus assays in lymphocytes and buccal cells—past, present and future. Mutagenesis 2011;26(1):239-245. https://doi.org/10.1093/mutage/ geq051

  3. Bonassi S, Coskun E, Ceppi M, Lando C, Bolognesi C, Burgaz S, et al. The HUman MicroNucleus project on eXfoLiated buccal cells (HUMN XL): the role of life-style, host factors, occupational exposures, health status, and assay protocol. Mutat Res 2011;728(3):88-97. https://doi. org/10.1016/j.mrrev.2011.06.005

  4. Koller VJ, Fürhacker M, Nersesyan A, Mišík M, Eisenbauer M, Knasmueller S. Cytotoxic and DNA-damaging properties of glyphosa-te and Roundup in human-derived buccal epithelial cells. Arch Toxicol 2012;86(5):805-813. https://doi.org/10.1007/s00204-012-0804-8

  5. Benedetti D, Nunes E, Sarmento M, Porto C, Dos Santos CE, Dias JF, da Silva J. Genetic damage in soybean workers exposed to pesticides: evaluation with the comet and buccal micronucleus cytome assays. Mutat Res 2013;752(1):28-33. https://doi.org/10.1016/j.mrgentox.2013.01.001

  6. Torres-Bugarín O, Zavala-Cerna MG, Nava A, Flores-García A, Ramos- Ibarra ML. Potential uses, limitations, and basic procedures of micronuclei and nuclear abnormalities in buccal cells. Dis Markers 2014;2014:956835. https://doi.org/10.1155/2014/956835

  7. Corbi SC, Bastos AS, Orrico SR, Secolin R, Dos Santos RA, Takahashi CS, Scarel-Caminaga RM. Elevated micronucleus frequency in patients with type 2 diabetes, dyslipidemia and periodontitis. Mutagenesis 2014;29(6):433-439. https://doi.org/10.1093/mutage/geu043

  8. Ghisi N de C, de Oliveira EC, Prioli AJ. Does exposure to glyphosate lead to an increase in the micronuclei frequency? A systematic and metaanalytic review. Chemosphere 2016;145:42-54. https://doi.org/10.1016/j. chemosphere.2015.11.044

  9. Castañeda-Yslas IJ, Arellano-García ME, García-Zarate MA, Ruíz-Ruíz B, Zavala-Cerna MG, Torres-Bugarín O. Biomonitoring with micronuclei test in buccal cells of female farmers and children exposed to pesticides of Maneadero agricultural valley, Baja California, Mexico. J Toxicol 2016;2016:7934257. https://doi.org/10.1155/2016/7934257

  10. Navarrete-Linares F. Los pueblos indígenas de México. México: CDI, 2008 [cited 2016 Apr 15]. Available from: http://ru.ffyl.unam.mx/handle/ 10391/353

  11. Comisión Nacional para el desarrollo de los pueblos indígenas. Programa Especial de los Pueblos Indígenas 2014-2018 [internet document] (cited 2016 Apr 18). Available from: http://www.cdi.gob.mx/programas/2014/ programa-especial-de-los-pueblos-indigenas-2014-2018.pdf

  12. Thomas P, Holland N, Bolognesi C, Kirsch-Volders M, Bonassi S, Zeiger E, et al. Buccal micronucleus cytome assay. Nat Protoc 2009;4(6):825-837. https://doi.org/10.1038/nprot.2009.53

  13. Bolognesi C, Bonassi S, Knasmueller S, Fenech M, Bruzzone M, Lando C, et al. Clinical application of micronucleus test in exfoliated buccal cells: A systematic review and metanalysis. Mutat Res Rev Muta Res 2015;766:20-31. https://doi.org/10.1016/j.mrrev.2015.07.002

  14. Schmezer P, Pool BL, Lefevre PA, Callander RD, Ratpan F, Tinwell H, et al. Assay-specific genotoxicity of N-nitrosodibenzylamine to the rat liver in vivo. Environ Mol Mutagen 1990;15(4):190-197. https://doi.org/10.1002/ em.2850150404

  15. Yamamoto M, Wakata A, Aoki Y, Miyamae Y, Kodama S. Chromosome loss caused by DNA fragmentation induced in main nuclei and micronuclei of human lymphoblastoid cells treated with colcemid. Mut Res 2014;762:10-16. https://doi.org/10.1016/j.mrfmmm.2014.02.002

  16. Rangel-Villalobos H, Martínez-Sevilla VM, Salazar-Flores J, Martínez- Cortez G, Muñoz-Valle JF, Galaviz-Hernández C, et al. Forensic parameters for 15 STRs in eight Amerindian populations from the north and west of Mexico. Forensic Sci Int Genet 2013;7(3):e62-e65. https://doi. org/10.1016/j.fsigen.2013.02.003

  17. Bonassi S, Fenech M, Lando C, Lin YP, Ceppi M, Chang WP, et al. HUman MicroNucleus project: international database comparison for results with the cytokinesis-block micronucleus assay in human lymphocytes: I. Effect of laboratory protocol, scoring criteria, and host factors on the frequency of micronuclei. Environ Mol Mutagen 2001;37(1):31-45. https://doi. org/10.1002/1098-2280(2001)37:1<31::AID-EM1004>3.0.CO;2-P

  18. Bonassi S, Biasotti B, Kirsch-Volders M, Knasmueller S, Zeiger E, Burgaz S, et al. State of the art survey of the buccal micronucleus assay-a first stage in the HUMNXL project initiative. Mutagenesis 2009;24(4):295-302. https://doi.org/10.1093/mutage/gep019

  19. Pacheco ADO, Hackel C. Chromosome instability induced by agrochemicals among farm workers in Passo Fundo, Rio Grande do Sul, Brazil. Cad Saude Publica 2002;18(6):1675-1683. https://doi.org/10.1590/S0102- 311X2002000600022

  20. Sycheva LP, Mozhaeva TE, Umnova NV, Zhuchenko NA, Diep VH, Tuyet HA. Cytogenetic and other cariological parameters of exfoliative buccal cells in Vietnamese children from areas where dioxin-containing herbicides were applied. Vestn Ross Akad Med Nauk 2008;(1):19-23.

  21. Jovtchev G, Gateva S, Stergios M, Kulekova S. Cytotoxic and genotoxic effects of paraquat in Hordeum vulgare and human lymphocytes in vitro. Environmental toxicology 2010;25(3):294-303. https://doi.org/10.1002/ tox.20503

  22. Pastor S, Creus A, Xamena N, Siffel C, Marcos R. Occupational exposure to pesticides and cytogenetic damage: results of a Hungarian population study using the micronucleus assay in lymphocytes and buccal cells. Environ Mol Mutagen 2002;40(2):101-109. https://doi.org/10.1002/ em.10100

  23. Zalacain M, Sierrasesumaga L, Patino A. The cytogenetic assay as a measure of genetic instability induced by genotoxic agents. An Sist Sanit Navar 2005;28(2):227-236.

  24. Tucker JD, Nath J, Hando JC. Activation status of the X chromosome in human micronucleated lymphocytes. Hum Genet 1996;97(4):471-475. https://doi.org/10.1007/BF02267069

  25. Fenech M. Important variables that influence base-line micronucleus frequency in cytokinesis-blocked lymphocytes—a biomarker for DNA damage in human populations. Mutat Res 1998;404(1):155-165. https://doi. org/10.1016/S0027-5107(98)00109-2

  26. Bukvic N, Gentile M, Susca F, Fanelli M, Serio G, Buonadonna L, et al. Sex chromosome loss, micronuclei, sister chromatid exchange and aging: a study including 16 centenarians. Mut Res 2001;498(1):159-167. https://doi. org/10.1016/S1383-5718(01)00279-0

  27. Konopacka M. Effect of smoking and aging on micronucleus frequencies in human exfoliated buccal cells. Neoplasma 2003;50(5):380-382.

  28. Haveric A, Haveric S, Ibrulj S. Micronuclei frequencies in peripheral blood and buccal exfoliated cells of young smokers and non-smokers. Toxicol Mech Methods 2010;20(5):260-266. https://doi.org/10.3109/1537 6516.2010.482962

  29. Zamani AG, Durakbasi-Dursun HG, Demirel S, Acar A. Evaluation of smoking genotoxicity in Turkish young adults. Indian J Hum Genet 2011;17(1):7-12. https://doi.org/10.4103/0971-6866.82186

  30. Feki-Tounsi M, Khlifi R, Mhiri MN, Rebai A, Hamza-Chaffai A. Cytogenetic damage in the oral mucosa cells of bladder cancer patients exposed to tobacco in Southern Tunisia. Environ Sci Pollut Res Int 2014;21(22):12922- 12927. https://doi.org/10.1007/s11356-014-3200-5

  31. Stich HF, San RH, Rosin MP. Adaptation of the DNA-repair and micronucleus test to human cell suspensions and exfoliated cells. Ann N Y Acad Sci 1983;407(1):93-105. https://doi.org/10.1111/j.1749-6632.1983.tb47816.x

  32. Miloševic-Djordjevic O, Grujicic D, Vaskovic Z, Marinkovic D. High micronucleus frequency in peripheral blood lymphocytes of untreated cancer patients irrespective of gender, smoking and cancer sites. Tohoku J Exp Med 2010;220(2):115-120. https://doi.org/10.1620/tjem.220.115

  33. Milošević-Djordjević O, Stošić I, Grujicǐ ć D, Banković D, Arsenijević S. Cervical precancerous lesions–chromosomal instability in peripheral blood lymphocytes in relation to lesion stage, age and smoking habits. Acta Obstet Gynecol Scand 2011;90(10):1082-1087. https://doi. org/10.1111/j.1600-0412.2011.01230.x

  34. Milosevic-Djordjevic O, Stosic I, Vuckovic M, Grujicic D, Marinkovic and D. Baseline and therapy-induced chromosome damages in peripheral blood lymphocytes of breast cancer patients assessed by the micronucleus assay. J BUON 2011;16(3):437-443.

  35. Maffei F, Fimognari C, Castelli E, Stefanini GF, Forti GC, Hrelia P. Increased cytogenetic damage detected by FISH analysis on micronuclei in peripheral lymphocytes from alcoholics. Mutagenesis 2000;15(6):517-523. https://doi.org/10.1093/mutage/15.6.517

  36. Reis SR, Sadigursky M, Andrade MG, Soares LP, Espírito Santo AR, Villas Boas DS. Genotoxic effect of ethanol on oral mucosa cells. Pesqui Odontol Bras 2002;16(3):221-225. https://doi.org/10.1590/S1517- 74912002000300007

  37. Reis SR, do Espírito Santo AR, Andrade MG, Sadigursky M. Cytologic alterations in the oral mucosa after chronic exposure to ethanol. Braz Oral Res 2006;20 (2):97-102. https://doi.org/10.1590/S1806- 83242006000200002

  38. Ishikawa H, Ishikawa T, Yamamoto H, Fukao A, Yokoyama K. Genotoxic effects of alcohol in human peripheral lymphocytes modulated by ADH1B and ALDH2 gene polymorphisms. Mutat Res 2007;615(1):134-142. https:// doi.org/10.1016/j.mrfmmm.2006.11.026

  39. Webber LP, Pellicioli AC, Magnusson AS, Danilevicz CK, Bueno CC, Sant’Ana Filho M, et al. Nuclear changes in oral mucosa of alcoholics and crack cocaine users. Hum Exp Toxicol; 35(2):184-193. https://doi. org/10.1177/0960327115579430

  40. Hedner K, Wadstein J, Mitelman F. Increased sister chromatid exchange frequency in chronic alcohol users. Heredita 1994;101(2):265-266. https:// doi.org/10.1111/j.1601-5223.1984.tb00926.x




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

salud publica mex. 2017;59

ARTíCULOS SIMILARES

CARGANDO ...