medigraphic.com
ENGLISH

Gaceta Médica de México

ISSN 0016-3813 (Impreso)
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2017, Número 3

<< Anterior Siguiente >>

Gac Med Mex 2017; 153 (3)


Nanodispositivos que actúan como nanotransportadores por la administración controlada y dirigida en medicamentos en células, órganos o tejidos seleccionados en las enfermedades cardiovasculares

Vélez-Reséndiz JM, Vélez-Arvízu JJ
Texto completo Cómo citar este artículo Artículos similares

Idioma: Ingles.
Referencias bibliográficas: 76
Paginas: 354-360
Archivo PDF: 99.23 Kb.


PALABRAS CLAVE

Nanomedicina, Nanotransportadores, Nanodispositivos, Nanotecnología, Sistema de liberación de fármacos, Enfermedades cardiovasculares, Medicamentos inteligentes.

RESUMEN

Las enfermedades cardiovasculares actualmente representan la principal causa de muerte en el mundo, y son importantes candidatas para la aplicación de la nanotecnología en un futuro próximo. Se están desarrollando nanotransportadores para la administración de medicamentos (fármacos inteligentes) en sitios específicos en células y tejidos de los vasos sanguíneos y el corazón, así como para realizar el diagnóstico, la detección temprana y el tratamiento individualizado. Otras aplicaciones de la nanotecnología están contempladas a largo plazo, como el uso de nanodispositivos para el suministro de fármacos o para corregir el mal acoplamiento de las proteínas. Con efectos superpotentes, las nanopartículas deberán ser capaces de provocar efectos terapéuticos a menor dosis y durante periodos más largos. La elaboración de nanodispositivos y nanotransportadores debe adoptar un enfoque integral que considere integralmente las propiedades físicas, químicas, biológicas, bioquímicas, anatómicas, morfológicas, fisiológicas, farmacológicas, toxicológicas, mecánicas, eléctricas, magnéticas, termodinámicas y ópticas, con el fin de evaluar la biocompatibilidad y, por tanto, evitar efectos tóxicos y no deseados. La intensificación en la investigación en relación con los nanotransportadores y otras nanotecnologías podrá ayudar a reducir la morbimortalidad provocada por las enfermedades cardiovasculares.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Global status report on noncommunicable diseases 2010. Geneve. World Health Organization. Available at: http://www.who.int/nmh/publications/ ncd_report2010/en/

  2. Mathers CD, Loncar D. Protections of global mortality and burden of disease from 2002 at 2030. PLoS Med. 2006;3:e442.

  3. Safari J, Zarnegar Z. Advanced drug delivery systems: Nanotechnology of health design: A review. J Saudi Chem Soc. 2014;18:85-99.

  4. Lammers T, Aime S, Hennink WE, Storm G, Kiessling F. Theranostic nanomedicine. Acc Chem Res. 2011;44:1029-38.

  5. Devaraj S, Munichandraiah N. Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys Chem C. 2008;112:4406-17.

  6. Cui H, Wang J. Progress in the development of nanotheranostic systems. Theranostics. 2016;6:915-7.

  7. Karimi M, Bahrami S, Ravari SB, et al. Albumin nanostructures as advanced drug delivery systems. Expert Opin Drug Deliv. 2016;13:1609-23.

  8. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2:751-60.

  9. Chow EK, Ho D. Cancer nanomedicine: from drug delivery to imaging. Sci Transl Med. 2013;5:216rv4.

  10. Mitragotri S, Burke PA, Langer R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov. 2014;13:655-72.

  11. Mitragotri S, Anderson DG, Chen X, et al. Accelerating the translation of nanomaterials in biomedicine. ACS Nano. 2015;9:6644-54.

  12. Zhu G, Zheng J, Song E, et al. Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics. Proc Natl Acad Sci USA. 2013;110:7998-8003.

  13. Lu Y, Sun W, Gu Z. Stimuli-responsive nanomaterials for therapeutic protein delivery. J Control Release. 2014;194:1-19.

  14. Li S, Gaddes ER, Chen N, Wang Y. Molecular encryption and reconfiguration for remodeling of dynamic hydrogels. Angew Chem Int Ed Engl. 2015;54:5957-61.

  15. Xie J, Lee S, Chen X. Nanoparticle-based theranostic agents. Adv Drug Deliv Rev. 2010;62:1064-79.

  16. Zheng J, Zhang C, Dickson RM. Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys Rev Lett. 2004;93:077402.

  17. Xie J, Liu G, Eden HS, Ai H, Chen X. Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Acc Chem Res. 2011;44:883-92.

  18. Niu G, Chen X. Lymphatic imaging: focus on imaging probes. Theranostics. 2015;5:686-97.

  19. Nomoto T, Fukushima S, Kumagai M, et al. Three-layered polyplex micelle as a multifunctional nanocarrier platform for light-induced systemic gene transfer. Nat Commun. 2014;5:3545.

  20. Carter KA, Shao S, Hoopes MI, et al. Porphyrin-phospholipid liposomes permeabilized by near-infrared light. Nat Commun. 2014;5:3546.

  21. Di J, Kim J, Hu Q, Jiang X, Gu Z. Spatiotemporal drug delivery using laser-generated-focused ultrasound system. J Control Release. 2015;220:592-9.

  22. Oliveira H, Perez-Andres E, Thevenot J, Sandre O, Berra E, Lecommandoux S. Magnetic field triggered drug release from polymersomes for cancer therapeutics. J Control Release. 2013;169:165-70.

  23. Chakravarty R, Goel S, Cai W. Nanobody: the “magic bullet” for molecular imaging. Theranostics. 2014;4:386.

  24. Choi SW, Zhang Y, Xia Y. A temperature-sensitive drug release system based on phase-change materials. Angew Chem Int Ed Engl. 2010;49:7904-8.

  25. Sirivisoot S, Pareta R, Webster TJ. Electrically controlled drug release from nanostructured polypyrrole coated on titanium. Nanotechnology. 2011;22:085101.

  26. Wang Y, Zhou K, Huang G, et al. A nanoparticle-based strategy for the imaging of a broad range of tumours by nonlinear amplification of microenvironment signals. Nat Mater. 2014;13:204-12.

  27. Sun CY, Shen S, Xu CF, et al. Tumor acidity-sensitive polymeric vector for active targeted siRNA delivery. J Am Chem Soc. 2015;137:15217-24.

  28. Cheng R, Meng F, Deng C, Zhong Z. Bioresponsive polymeric nanotherapeutics for targeted cancer chemotherapy. Nano Today. 2015; 10:656-70.

  29. Broaders KE, Grandhe S, Frechet JM. A biocompatible oxidation-triggered carrier polymer with potential in therapeutics. J Am Chem Soc. 2011;133:756-8.

  30. Wang M, Sun S, Neufeld CI, Perez-Ramirez B, Xu Q. Reactive oxygen species-responsive protein modification and its intracellular delivery for targeted cancer therapy. Angew Chem Int Ed Engl. 2014;53:13444-8.

  31. Hu Q, Katti PS, Gu Z. Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale. 2014;6:12273-86.

  32. Sun W, Jiang T, Lu Y, Reiff M, Mo R, Gu Z. Cocoon-like self-degradable DNA nanoclew for anticancer drug delivery. J Am Chem Soc. 2014;136:14722-5.

  33. Mo R, Jiang T, Di J, Tai W, Gu Z. Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. Chem Soc Rev. 2014;43:3595-629.

  34. Zhang YQ, Yu JC, Shen QD, Gu Z. Glucose-responsive synthetic closedloop insulin delivery systems. Prog Chem. 2015;27:11-26.

  35. Hola K, Zhang Y, Wang Y, Giannelis EP, Zboril R, Rogach AL. Carbon dots—Emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today. 2014;9:590-603.

  36. Chen C, Peng J, Sun SR, Peng CW, Li Y, Pang DW. Tapping the potential of quantum dots for personalized oncology: current status and future perspectives. Nanomedicine (Lond). 2012;7:411-28.

  37. Cobley CM, Chen J, Cho EC, Wang LV, Xia Y. Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem Soc Rev. 2011;40:44-56.

  38. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. The chemistry and applications of metal-organic frameworks. Science. 2013;341:1230444.

  39. Sun B, Sun MJ, Gu Z, et al. Conjugated polymer fluorescence probe for intracellular imaging of magnetic nanoparticles. Macromolecules. 2010;43:10348-54.

  40. Traina CA, Bakus RC, Bazan GC. Design and synthesis of monofunctionalized, water-soluble conjugated polymers for biosensing and imaging applications. J Am Chem Soc. 2011;133:12600-7.

  41. Ahmed E, Morton SW, Hammond PT, Swager TM. Fluorescent multiblock pi-conjugated polymer nanoparticles for in vivo tumor targeting. Adv Mater. 2013;25:4504-10.

  42. Yuan Y, Liu J, Liu B. Conjugated-polyelectrolyte-based polyprodrug: Targeted and image-guided photodynamic and chemotherapy with on-demand drug release upon Irradiation with a single light source. Angew Chem Int Ed Engl. 2014;126:7291-6.

  43. Jin GR, Mao D, Cai PQet al. Conjugated polymer nanodots as ultrastable long-term trackers to understand mesenchymal stem cell therapy in skin regeneration. Adv Funct Mater. 2015;25:4263-73.

  44. Pu KY, Shuhendler AJ, Jokerst JV, et al. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat Nanotechnol. 2014;9:233-9.

  45. Zhang Z, Eyster TW, Ma PX. Nanostructured injectable cell microcarriers for tissue regeneration. Nanomedicine (Lond). 2016;11:1611-28.

  46. De Jong WH, Borm PJA. Drug delivery and nanoparticles: Applications and hazards. Int J Nanomedicine. 2008;3:133-49.

  47. Wu J, Kamaly N, Shi J, et al. Development of multinuclear polymeric nanoparticles as robust protein nanocarriers. Angew Chem Int Ed Engl. 2014;53:8975-9.

  48. Du AW, Stenzel MH. Drug carriers for the delivery of therapeutic peptides. Biomacromolecules. 2014;15:1097-114.

  49. Latorre A, Couleaud P, Aires A, Cortajarena AL, Somoza A. Multifunctionalization of magnetic nanoparticles for controlled drug release: a general approach. Eur J Med Chem. 2014;82:355-62.

  50. Culver H, Daily A, Khademhosseini A, Peppas N. Intelligent recognitive systems in nanomedicine. Curr Opin Chem Eng. 2014;4:105-13.

  51. Tang Y, Gan X, Cheheltani R, et al. Targeted delivery of vascular endothelial growth factor improves stem cell therapy in a rat myocardial infarction model. Nanomedicine. 2014;10:1711-8.

  52. Howard M, Zern BJ, Anselmo AC, Shuvaev VV, Mitragotri S, Muzykantov V. Vascular targeting of nanocarriers: perplexing aspects of the seemingly straightforward paradigm. ACS Nano. 2014;8:4100-32.

  53. Gadde S, Even-Or O, Kamaly N, et al. Development of therapeutic polymeric nanoparticles for the resolution of inflammation. Adv Health Mater. 2014;3:1448-56.

  54. Marrache S, Pathnak RK, Darley KL, et al. Nanocarriers for tracking and treating diseases. Curr Med Chem. 2013;20:3500-14.

  55. Marrache S, Dhar S. Biodegradable synthetic high-density lipoprotein nanoparticles for atherosclerosis. Proc Natl Acad Sci USA. 2013;110: 9445-50.

  56. Jain KK. Nanobiotechnology and personalized medicine. Prog Mol Biol Transl Sci. 2011;104:325-54.

  57. Jain KK. Nanomedicine: application of nanobiotechnology in medical practice. Med Princ Pract. 2008;17:89-101.

  58. Mulder WJ, Jaffer FA, Fayad ZA, Nahrendorf M. Imaging and nanomedicine in inflammatory atherosclerosis. Sci Transl Med. 2014;6:239sr1.

  59. Korin N, Kanapathipillai M, Matthews BD, et al. Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. Science. 2010;337:738-42.

  60. Korin N, Gounis MJ, Wakhloo AK, Ingber DE. Targeted drug delivery to flow-obstructed vessels using mechanically activated nanotherapeutics. JAMA Neurol. 2015;72:119-22.

  61. Serpooshan V, Sivanesan S, Huang X, et al. [Pyr1]-Apelin-13 delivery via nano-liposomal encapsulation attenuates pressure overload-induced cardiac dysfunction. Biomaterials. 2015;37:289-98.

  62. Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 2015;93:52-79.

  63. Zins K, Sioud M, Aharinejad S, Lucas T, Abraham D. Modulating the tumor microenvironment with RNA interference as a cancer treatment strategy. Methods Mol Biol. 2015;1218:143-61.

  64. Behzadi S, Serpooshan V, Sakhtianchi R, et al. Protein corona change the drug release profile of nanocarriers: the “overlooked” factor at the nanobio interface. Colloids Suf B Biointerfaces. 2014;123:143-9.

  65. Gu L, Faig A, Abdelhamid D, UHrich K. Sugar-based amphiphilic polymers for biomedical applications: from nanocarriers to therapeutics. Acc Chem Res. 2014;47:2867-77.

  66. Khalyfa A, Gozal D. Exosomal miRNAs as potential biomarkers of cardiovascular risk in children. J Transl Med. 2014;12:162.

  67. Bell IR, Ives JA, Jonas WB. Nonlinear effects of nanoparticles: biological variability from hermetic doses, small particle sizes, and dynamic adaptive interactions. Dose Response. 2013;12:202-32.

  68. Kransnoslobodtsev AV, Shlyakhtenko LS, Ukraintsev E, Zaikova TO, Keana JF, Lyubcchenko YL. Nanomedicine and protein misfolding diseases. Nanomedicine. 2005;1:300-5.

  69. Freitas RA. The future of nanofabrication and molecular scale devices in nanomedicine. Stud Health Technol Inform. 2002;80:45-59.

  70. Vélez JM, Vélez JJ. The eminent need for an academic program in universities to teach nanomedicine. Int J Nanomedicine. 2011;6:1733-8.

  71. Chiodo F, Marradi M, Calvo J, Yuste E, Penades S. Glycosystems in nanotechnology: Gold glyconanoparticles as carrier for anti-HIV prodrugs. Beilstein J Org Chem. 2014;10:1339-46.

  72. Blakney AK, Krogstad EA, Jiang YH, Woodrow KA. Delivery of multipurpose prevention drug combinations from Electrospun nanofibers using composite microarchitectures. Int J Nanomedicine. 2014;9:2967-78.

  73. Elsayed I, Abdelbary AA, Elshafeey AH. Nanosizing of a poorly soluble drug: technique optimization, factorial analysis, and pharmacokinetic study in healthy human volunteers. Int J Nanomedicine. 2014; 9:2943-53.

  74. Tintoré M, Eritja R, Fabrega C, DNA Nanoarchitectures: Steps towards biological applications. Chembiochem. 2014;15:1374-90.

  75. Zhao H, Li Y, Hu Y. Nanotechnologies in glycoproteomics. Clin Proteomics. 2014;11:21.

  76. Yin RX, Yang DZ, Wu JZ. Nanoparticle drug- and gene-eluting stents for the prevention and treatment of coronary restenosis. Theranostics. 2014;4:175-200.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Gac Med Mex. 2017;153

ARTíCULOS SIMILARES

CARGANDO ...