medigraphic.com
ENGLISH

Revista Mexicana de Neurociencia

Academia Mexicana de Neurología, A.C.
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2017, Número 4

<< Anterior Siguiente >>

Rev Mex Neuroci 2017; 18 (4)


Aspectos celulares y consideraciones del estudio de la excitabilidad por ca2+ en astrocitos

Montes BP
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 88
Paginas: 57-69
Archivo PDF: 277.11 Kb.


PALABRAS CLAVE

Astrocito, Excitabilidad, fisiología de Ca2+, sinapsis tripartita.

RESUMEN

Introducción: Por más de un siglo la función del Sistema Nervioso (SN) se estudió desde una perspectiva neurocéntrica, considerando la actividad eléctrica de las neuronas, la función de sus circuitos y sus cambios celulares como el sustrato único del flujo y manejo de la información. En esta perspectiva los astrocitos (As), las células más abundantes del SN, tenían asignados papeles conectivo, homeostático y metabólico que permitían el funcionamiento de las neuronas. No obstante, hoy sabemos que las células astrogliales participan activamente en el flujo y manejo de la información, gracias a su expresión de receptores a neurotransmisores, la secreción de neurotransmisores, su excitabilidad por Ca2+, la formación de redes y su estrecha relación con la sinapsis. Estas características en conjunto permitieron que hace más de quince años se propusiera la hipótesis de la sinapsis tripartita. Objetivo: En el presente trabajo se revisan el mecanismo de excitabilidad por Ca2+ de los As, sus actores moleculares, los organelos involucrados y las propiedades de las ondas de Ca2+. Adicionalmente, se recapitulan algunas consideraciones principalmente metodológicas en función de las lecciones aprendidas del estudio de estas células en las últimas décadas. Conclusiones: La participación de la astroglía en el manejo de la información en el cerebro representa sin lugar a dudas un avance paradigmático para la comprensión del SN, cuyas aparentes contradicciones lentamente se van solventando. El estudio de su excitabilidad por Ca2+ ha generado una reevaluación de sus funciones, lo que conlleva gradualmente a una visón más integral del SN.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ. Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science. (80-. ). 1990;247(4941):470–473.

  2. Giaume C, McCarthy KD. Control of gap-junctional communication in astrocytic networks. Trends Neurosci. 1996;19(8):319–325.

  3. Araque A, Parpura V, Sanzgiri RP, Haydon PG. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 1999;22(5):208–215.

  4. Volterra A, Meldolesi J. Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci. 2005;6(8):626–640.

  5. Volterra A, Liaudet N, Savtchouk I. Astrocyte Ca2+ signalling: an unexpected complexity. Nat. Rev. Neurosci. 2014;15(5):327–35.

  6. De Pitt?? M, Brunel N, Volterra A. Astrocytes: Orchestrating synaptic plasticity? Neuroscience. 2015;

  7. Bernardinelli Y, Randall J, Janett E, et al. Activity-Dependent Structural Plasticity of Perisynaptic Astrocytic Domains Promotes Excitatory Synapse Stability. Curr. Biol. 2014;24(15):1679–1688.

  8. Di Castro MA, Chuquet J, Liaudet N, et al. Local Ca2+ detection and modulation of synaptic release by astrocytes. Nat. Neurosci. 2011;14(10):1276–84.

  9. Srinivasan R, Huang BS, Venugopal S, et al. Ca2+ signaling in astrocytes from Ip3r2-/- mice in brain slices and during startle responses in vivo. Nat. Neurosci. 2015;18(5):708–717.

  10. Nedergaard M, Rodr??guez JJ, Verkhratsky A. Glial calcium and diseases of the nervous system. Cell Calcium. 2010;47(2):140–149.

  11. Robertson JM. The Astrocentric Hypothesis: proposed role of astrocytes in consciousness and memory formation. J Physiol Paris. 2002;96(3–4):251–255.

  12. Porter JT, McCarthy KD. GFAP-positive hippocampal astrocytes in situ respond to glutamatergic neuroligands with increases in [Ca2+]i. Glia. 1995;13(2):101–12.

  13. Pasti L, Zonta M, Pozzan T, Vicini S, Carmignoto G. Cytosolic calcium oscillations in astrocytes may regulate exocytotic release of glutamate. J. Neurosci. 2001;21(2):477–484.

  14. Dani JW, Smith SJ. The triggering of astrocytic calcium waves by NMDA-induced neuronal activation. Ciba Found. Symp. 1995;188:195-205–9.

  15. Di Castro MA, Chuquet J, Liaudet N, et al. Local Ca2+ detection and modulation of synaptic release by astrocytes. Nat. Neurosci. 2011;14(10):1276–1284.

  16. Kuga N, Sasaki T, Takahara Y, Matsuki N, Ikegaya Y. Large-Scale Calcium Waves Traveling through Astrocytic Networks In Vivo. J. Neurosci. 2011;31(7):2607–2614.

  17. Scemes E, Giaume C. Astrocyte calcium waves: what they are and what they do. Glia. 2006;54(7):716–25.

  18. Bushong EA, Martone ME, Jones YZ, Ellisman MH. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J. Neurosci. 2002;22(1):183–92.

  19. Ogata K, Kosaka T. Structural and quantitative analysis of astrocytes in the mouse hippocampus. Neuroscience. 2002;113(1):221–33.

  20. Koizumi S. Synchronization of Ca2+ oscillations: involvement of ATP release in astrocytes. Febs J. 2010;277(2):286–292.

  21. Khakh BS, McCarthy KD. Astrocyte calcium signaling: from observations to functions and the challenges therein. Cold Spring Harb. Perspect. Biol. 2015;7(4):a020404.

  22. Verkhratsky A, Parpura V. Calcium Signaling in Neuroglia. Neuroglia. 2013;320–332.

  23. Glial physiology and pathophysiology: a handbook. Chichester: Wiley-Blackwell; 2013.

  24. Hashioka S, Wang YF, Little JP, et al. Purinergic responses of calcium-dependent signaling pathways in cultured adult human astrocytes. BMC Neurosci. 2014;15:18.

  25. Lalo U, Pankratov Y, Wichert SP, et al. P2X1 and P2X5 subunits form the functional P2X receptor in mouse cortical astrocytes. J. Neurosci. 2008;28(21):5473–5480.

  26. Pan H-C, Chou Y-C, Sun SH. P2X7 R-mediated Ca(2+) -independent d-serine release via pannexin-1 of the P2X7 R-pannexin-1 complex in astrocytes. Glia. 2015;63(5):877–93.

  27. Kettenman H, Zorec R. Release of Gliotransmitters and Transmitter Receptors in Astrocytes. Neuroglia. 2013;197–211.

  28. Sharma G, Vijayaraghavan S. Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium-induced calcium release from intracellular stores. Proc. Natl. Acad. Sci. U. S. A. 2001;98(7):4148–4153.

  29. Montes de Oca Balderas P, Aguilera P. A Metabotropic-Like Flux-Independent NMDA Receptor Regulates Ca2+ Exit from Endoplasmic Reticulum and Mitochondrial Membrane Potential in Cultured Astrocytes. PLoS One. 2015;10(5):e0126314.

  30. Rodríguez-Moreno A, Sihra TS. Kainate receptors with a metabotropic modus operandi. Trends Neurosci. 2007;30(12):630–7.

  31. D’Ascenzo M, Vairano M, Andreassi C, et al. Electrophysiological and Molecular Evidence of L-(Cav1), N- (Cav2.2), and R- (Cav2.3) Type Ca2+ Channels in Rat Cortical Astrocytes. Glia. 2004;45(4):354–363.

  32. Latour I, Hamid J, Beedle AM, Zamponi GW, Macvicar BA. Expression of voltage-gated Ca2+ channel subtypes in cultured astrocytes. Glia. 2003;41(4):347–353.

  33. Barres BA, Koroshetz WJ, Chun LL, Corey DP. Ion channel expression by white matter glia: the type- 1 astrocyte. Neuron. 1990;5(4):527–44.

  34. Ransom B, Giaume C. Gap Junctions and Hemichannels. Neuroglia. 2013;292–305.

  35. Reyes RC, Parpura V. The trinity of Ca2+ sources for the exocytotic glutamate release from astrocytes. Neurochem Int. 2009;55(1–3):2–8.

  36. Golovina V a. Visualization of localized store-operated calcium entry in mouse astrocytes. Close proximity to the endoplasmic reticulum. J. Physiol. 2005;564(Pt 3):737–749.

  37. Malarkey EB, Ni Y, Parpura V. Ca2+ entry through TRPC1 channels contributes to intracellular Ca2+ dynamics and consequent glutamate release from rat astrocytes. Glia. 2008;56(8):821–835.

  38. Reyes RC, Verkhratsky A, Parpura V. TRPC1-mediated Ca2+ and Na+ signalling in astroglia: differential filtering of extracellular cations. Cell Calcium. 2013;54(2):120–5.

  39. Streifel KM, Miller J, Mouneimne R, Tjalkens RB. Manganese inhibits ATP-induced calcium entry through the transient receptor potential channel TRPC3 in astrocytes. Neurotoxicology. 2013;34:160–6.

  40. Liang C, Du T, Zhou J, Verkhratsky A, Peng L. Ammonium increases Ca(2+) signalling and upregulates expression of TRPC1 gene in astrocytes in primary cultures and in the in vivo brain. Neurochem. Res. 2014;39(11):2127–35.

  41. Ronco V, Grolla AA, Glasnov TN, et al. Differential deregulation of astrocytic calcium signalling by amyloid-β, TNFα, IL-1β and LPS. Cell Calcium. 2014;55(4):219–29.

  42. Shibasaki K, Ikenaka K, Tamalu F, Tominaga M, Ishizaki Y. A novel subtype of astrocytes expressing TRPV4 (transient receptor potential vanilloid 4) regulates neuronal excitability via release of gliotransmitters. J. Biol. Chem. 2014;289(21):14470–80.

  43. Dunn KM, Hill-Eubanks DC, Liedtke WB, Nelson MT. TRPV4 channels stimulate Ca2+-induced Ca2+ release in astrocytic endfeet and amplify neurovascular coupling responses. Proc. Natl. Acad. Sci. U.S.A. 2013;110(15):6157–62.

  44. Shibasaki K, Ishizaki Y, Mandadi S. Astrocytes express functional TRPV2 ion channels. Biochem. Biophys. Res. Commun. 2013;441(2):327–32.

  45. Shigetomi E, Tong X, Kwan KY, Corey DP, Khakh BS. TRPA1 channels regulate astrocyte resting calcium and inhibitory synapse efficacy through GAT-3. Nat. Neurosci. 2012;15(1):70–80.

  46. Shigetomi E, Jackson-Weaver O, Huckstepp RT, O’Dell TJ, Khakh BS. TRPA1 channels are regulators of astrocyte basal calcium levels and long-term potentiation via constitutive D-serine release. J. Neurosci. 2013;33(24):10143–53.

  47. Barajas M, Andrade A, Hernandez-Hernandez O, Felix R, Arias-Montaño JA. Histamine-induced Ca21 entry in human astrocytoma U373 MG cells: Evidence for involvement of store-operated channels. J. Neurosci. Res. 2008;86(15):3456–3468.

  48. Moreno C, Sampieri A, Vivas O, Peña-Segura C, Vaca L. STIM1 and Orai1 mediate thrombin-induced Ca(2+) influx in rat cortical astrocytes. Cell Calcium. 2012;52(6):457–67.

  49. Putney JW. Recent breakthroughs in the molecular mechanism of capacitative calcium entry (with thoughts on how we got here). Cell Calcium. 2007;42(2):103–10.

  50. Minelli A, Castaldo P, Gobbi P, et al. Cellular and subcellular localization of Na+-Ca2+ exchanger protein isoforms, NCX1, NCX2, and NCX3 in cerebral cortex and hippocampus of adult rat. Cell Calcium. 2007;41(3):221–234.

  51. Kirischuk S, Ketfenmann H. Na+/ Ca2+exchanger modulates Ca2+ signaling in Bergmann glial cells in situ. Fed. Am. Soc. Exp. Biol. 2007;7(566):566–572.

  52. Goldman WF, Yarowsky PJ, Juhaszova M, Krueger BK, Blaustein MP. Sodium/calcium exchange in rat cortical astrocytes. J. Neurosci. 1994;14(10):5834–5843.

  53. Reyes RC, Verkhratsky A, Parpura V. Plasmalemmal Na+/Ca2+ exchanger modulates Ca2+- dependent exocytotic release of glutamate from rat cortical astrocytes. ASN Neuro. 2012;4(1):33–45.

  54. Paluzzi S, Alloisio S, Zappettini S, et al. Adult astroglia is competent for Na+/Ca2+ exchangeroperated exocytotic glutamate release triggered by mild depolarization. J. Neurochem. 2007;103(3):1196–1207.

  55. Kamer KJ, Mootha VK. The molecular era of the mitochondrial calcium uniporter. Nat. Rev. Mol. Cell Biol. 2015;16(9):545–53.

  56. Rizzuto R. Microdomains of Intracellular Ca2+: Molecular Determinants and Functional Consequences. Physiol. Rev. 2006;86(1):369–408.

  57. Parnis J, Montana V, Delgado-Martinez I, et al. Mitochondrial exchanger NCLX plays a major role in the intracellular Ca2+ signaling, gliotransmission, and proliferation of astrocytes. J. Neurosci. 2013;33(17):7206–19.

  58. Vardjan N, Parpura V, Zorec R. Loose excitation-secretion coupling in astrocytes. Glia. 2016;May 64(5):655–67.

  59. Sahlender DA, Savtchouk I, Volterra A. What do we know about gliotransmitter release from astrocytes? Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2014;369(1654):20130592.

  60. Neuroglia. New York: Oxford; 2013.

  61. Golovina VA, Blaustein MP. Unloading and refilling of two classes of spatially resolved endoplasmic reticulum Ca(2+) stores in astrocytes. Glia. 2000;31(1):15–28.

  62. Hua X, Malarkey EB, Sunjara V, et al. Ca2+-Dependent Glutamate Release Involves Two Classes of Endoplasmic Reticulum Ca2+ Stores in Astrocytes. J. Neurosci. Res. 2004;76(1):86–97.

  63. Rusakov DA, Bard L, Stewart MG, Henneberger C. Diversity of astroglial functions alludes to subcellular specialisation. Trends Neurosci. 2014;37(4):228–42.

  64. Petravicz J, Boyt KM, McCarthy KD. Astrocyte IP3R2-dependent Ca(2+) signaling is not a major modulator of neuronal pathways governing behavior. Front. Behav. Neurosci. 2014;8(November):384.

  65. Fiacco TA, Agulhon C, Taves SR, et al. Selective Stimulation of Astrocyte Calcium In??Situ??Does Not Affect Neuronal Excitatory??Synaptic Activity. Neuron. 2007;54(4):611–626.

  66. Petravicz J, Fiacco TA, McCarthy KD. Loss of IP3 receptor-dependent Ca2+ increases in hippocampal astrocytes does not affect baseline CA1 pyramidal neuron synaptic activity. J. Neurosci. 2008;28(19):4967–73.

  67. Agulhon C, Fiacco TA, McCarthy KD. Hippocampal short- and long-term plasticity are not modulated by astrocyte Ca2+ signaling. Science. (80-. ). 2010;327(5970):1250–1254.

  68. Reichenbach A, Derouiche A, Kirchhoff F. Morphology and dynamics of perisynaptic glia. Brain Res. Rev. 2010;63(1–2):11–25.

  69. Patrushev I, Gavrilov N, Turlapov V, Semyanov A. Subcellular location of astrocytic calcium stores favors extrasynaptic neuron-astrocyte communication. Cell Calcium. 2013;54(5):343–9.

  70. Jackson JG, Robinson MB. Reciprocal Regulation of Mitochondrial Dynamics and Calcium Signaling in Astrocyte Processes. J. Neurosci. 2015;35(45):15199–213.

  71. Peng TI, Greenamyre JT. Privileged access to mitochondria of calcium influx through N-methyl-Daspartate receptors. Mol. Pharmacol. 1998;53(6):974–80.

  72. Hur YS, Kim KD, Paek SH, Yoo SH. Evidence for the existence of secretory granule (dense-core vesicle)-based inositol 1,4,5-trisphosphate-dependent Ca2+ signaling system in astrocytes. PLoS One. 2010;5(8):e11973.

  73. Barceló-Torns M, Lewis AM, Gubern A, et al. NAADP mediates ATP-induced Ca2+ signals in astrocytes. FEBS Lett. 2011;585(14):2300–6.

  74. Heidemann AC, Schipke CG, Kettenmann H. Extracellular application of nicotinic acid adenine dinucleotide phosphate induces Ca2+ signaling in astrocytes in situ. J. Biol. Chem. 2005;280(42):35630–40.

  75. Gomes DA, Leite MF, Bennett AM, Nathanson MH. Calcium signaling in the nucleus. Can. J. Physiol. Pharmacol. 2006;84(3–4):325–32.

  76. Hardingham GE, Arnold FJ, Bading H. Nuclear calcium signaling controls CREB-mediated gene expression triggered by synaptic activity. Nat. Neurosci. 2001;4(3):261–7.

  77. Zhao L, Brinton RD. Vasopressin-induced cytoplasmic and nuclear calcium signaling in embryonic cortical astrocytes: dynamics of calcium and calcium-dependent kinase translocation. J. Neurosci. 2003;23(10):4228–39.

  78. Zheng K, Bard L, Reynolds JP, et al. Time-Resolved Imaging Reveals Heterogeneous Landscapes of Nanomolar Ca2+ in Neurons and Astroglia. Neuron. 2015;88(2):277–288.

  79. Smith K. Neuroscience: Settling the great glia debate. Nature. 2010;468(7321):160–162.

  80. Panatier A, Vallée J, Haber M, et al. Astrocytes are endogenous regulators of basal transmission at central synapses. Cell. 2011;146(5):785–98.

  81. Croft W, Dobson KL, Bellamy TC. Plasticity of Neuron-Glial Transmission: Equipping Glia for Long- Term Integration of Network Activity. Neural Plast. 2015;2015:1–11.

  82. Dombeck DA, Khabbaz AN, Collman F, Adelman TL, Tank DW. Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron. 2007;56(1):43–57.

  83. Howarth C. The contribution of astrocytes to the regulation of cerebral blood flow. Front. Neurosci. 2014;8:103.

  84. Anderson MA, Ao Y, Sofroniew M V. Heterogeneity of reactive astrocytes. Neurosci. Lett. 2014;565:23–29.

  85. Matyash V, Kettenmann H. Heterogeneity in astrocyte morphology and physiology. Brain Res Rev. 2010;63(1–2):2–10.

  86. Sun W, McConnell E, Pare J-F, et al. Glutamate-dependent neuroglial calcium signaling differs between young and adult brain. Science. 2013;339(6116):197–200.

  87. Thrane AS, Rangroo Thrane V, Zeppenfeld D, et al. General anesthesia selectively disrupts astrocyte calcium signaling in the awake mouse cortex. Proc. Natl. Acad. Sci. U. S. A. 2012;109(46):18974–9.

  88. Rusakov D a. Disentangling calcium-driven astrocyte physiology. Nat. Rev. Neurosci. 2015;16(March):1–8.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Mex Neuroci. 2017;18

ARTíCULOS SIMILARES

CARGANDO ...