medigraphic.com
ENGLISH

Revista Mexicana de Neurociencia

Academia Mexicana de Neurología, A.C.
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2017, Número 6

<< Anterior Siguiente >>

Rev Mex Neuroci 2017; 18 (6)


Ganglios Basales y Conducta

Ospina-García N, Pérez-Lohman C, Vargas-Jaramillo JD, Cervantes-Arriaga A, Rodríguez-Violante M
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 42
Paginas: 74-86
Archivo PDF: 480.65 Kb.


PALABRAS CLAVE

Ganglios basales, conducta, recompensa, sistema límbico.

RESUMEN

Históricamente la función de los ganglios basales ha sido motivo de debate y de estudio. Inicialmente se consideró que estas estructuras participaban exclusivamente en la conducta motora; sin embargo, el conocimiento que se tiene hoy en día, permite entender que estas estructuras y sus conexiones son determinantes no solamente en la conducta motora, sino también en la cognición, aprendizaje y las emociones. En la presente revisión se describen las bases neuroanatómicas y funcionales de los ganglios bases, enfatizando tanto en los esquemas tradicionales como en los modelos más recientes incluyendo los circuitos sensorimotor, asociativo y límbico, así como la relevancia de los sistemas de recompensa.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Marsden CD. The mysterious motor function of the basal ganglia: The Robert Wartenberg Lecture. Neurology. 1982;32(5):514-539.

  2. DeLong MR. Primate models in movement disorders of basal ganglia origin. Trends Neurosci. 1990;13(7)281-285.

  3. Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9:357-381.

  4. Saint-Cyr JA, Taylor AE, Nicholson K. Behavior and the basal ganglia. Adv Neurol. 1995;65:1-28.

  5. Medina L, Reiner A. Neurotransmitter organization and connectivity of the basal ganglia in vertebrates: Implications for the evolution of basal ganglia. Brain Behav Evol. 1995;46:235-258.

  6. Levy R, Dubois B. Apathy and the functional anatomy of the prefrontal cortex-basal ganglia circuits. Cereb Cortex. 2006;16(7):916-928.

  7. Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci. 1989;12(10):366-375.

  8. Catani M, Dell’acqua F, Thiebaut de Schotten M. A revised limbic system model for memory, emotion and behavior. Neurosci Biobehav Rev. 2013;37(8):1724-1737.

  9. Rajmohan V, Mohandas E. Indian J Psychiatry. 2007;49(2):132-139.

  10. Schiffmann SN, Fisone G, Moresco R, et al. Adenosine A2A receptors and basal ganglia physiology. Prog Neurobiol. 2007;83(5):277-292.

  11. Mathur BN, Lovinger DM. Endocannabinoid-dopamine interactions in striatal synaptic plasticity. Front Pharmacol. 2012;3(66):1-11.

  12. Beaulieu J-M, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011;63(1):182-217.

  13. Lanciego JL, Luquin N, Obeso JA. Functional neuroanatomy of the basal ganglia. Cold Spring Harb Perspect Med. 2012;2(12):1-20.

  14. Obeso JA, Rodríguez-Oroz MC, Benitez-Temino B, et al. Functional organization of the basal ganglia: Therapeutic implications for Parkinson’s disease. Mov Disord. 2008;23(S3):548-559.

  15. Benarroch EE. Intrinsic circuits of the striatum. Neurology. 2016;86(16):1531-1542.

  16. Obeso JA, Lanciego JL. Past, present, and future of the pathophysiological model of the Basal Ganglia. Front Neuroanat. 2011;5(39):1-6.

  17. Redgrave P, Rodriguez M, Smith Y, et al. Goal-directed and habitual control in the basal ganglia: implications for Parkinson’s disease. Nat Rev Neurosci. 2010;11:760-772.

  18. Neve KA, Seamans JK, Trantham-Davidson H. Dopamine receptor signaling. J Recept Signal Transduct Res. 2004;24(3):165-205.

  19. Nambu A, Tokuno H, Takada M. Functional significance of the cortico-subthalamo-pallidal “hyperdirect” pathway. Neurosci Res. 2002;43(2):111-117.

  20. Reiner A, Hart NM, Lei W, Deng Y. Corticostriatal projection neurons - dichotomous types and dichotomous functions. Front Neuroanat. 2010;4(142):1-15.

  21. Smith Y, Galvan A, Ellender TJ, et al. The thalamostriatal system in normal and diseased states. Front Syst Neurosci. 2014;8(5):1-18.

  22. Alexander GE, Crutcher MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 1990;13(7):266-271.

  23. Redgrave P, Prescott TJ, Gurney K. The basal ganglia: a vertebrate solution to the selection problem? Neuroscience. 1999;89(4):1009-1023.

  24. DeLong M, Wichmann T. Update on models of basal ganglia function and dysfunction. Parkinsonism Relat Disord. 2009;15(S3):237-240.

  25. Jahanshahi M, Obeso I, Rothwell JC, Obeso JA. A fronto-striato-subthalamic-pallidal network for goal-directed and habitual inhibition. Nat Rev Neurosci. 2015;16(12):719-732.

  26. Hassan A, Benarroch EE. Heterogeneity of the midbrain dopamine system. Implications for Parkinson disease. Neurology. 2015;85(20):1795-1805.

  27. Redgrave P, Coizet V. Brainstem interactions with the basal ganglia. Parkinsonism Relat Disord. 2007;13(S3):301-305.

  28. Smith Y, Surmeier DJ, Redgrave P, Kimura M. Thalamic contributions to basal ganglia-related behavioral switching and reinforcement. J Neurosci. 2011;31(45):16102-16106.

  29. Redgrave P, Vautrelle N, Reynolds JN. Functional properties of the basal ganglia’s re-entrant loop architecture: selection and reinforcement. Neuroscience. 2011;15(198):138-151.

  30. Brown P. Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson’s disease. Mov Disord. 2003;18(4):357-363.

  31. Loonen AJ, Ivanova SA. Circuits regulating pleasure and happiness: The evolution of the amygdalarhippocampal- habenular connectivity in vertebrates. Front Neurosci. 2016;10(539):1-17.

  32. Loonen AJ, Ivanova SA. New insights into the mechanism of drug-induced dyskinesia. CNS Spectr. 2013;18(1)15-20.

  33. Heimer L. A new anatomical framework for neuropsychiatric disorders and drug abuse. Am J Psychiatry. 2003;160(10):1726-1739.

  34. Groenewegen HJ. The basal ganglia and motor control. Neural Plast. 2003;10(1-2):107-120.

  35. Benarroch EE. Habenula: recently recognized functions and potential clinical relevance. Neurology. 2015;85(11):992-1000.

  36. Cassell MD, Freedman LJ, Shi C. The intrinsic organization of the central extended amygdala. Ann NY Acad Sci. 1999;877:217-241.

  37. Heimer L, Van Hoesen GW. The limbic lobe and its output channels: implications for emotional functions and adaptive behavior. Neurosci Biobehav Rev. 2006;30(2):126-147.

  38. Groenewegen HJ, Trimble M. The ventral striatum as an interface between the limbic and motor systems. CNS Spectr. 2007;12(12):887-892.

  39. Dalley JW, Mar AC, Economidou D, Robbins TW. Neurobehavioral mechanisms of impulsivity: fronto-striatal systems and functional neurochemistry. Pharmacol Biochem Behav. 2008;90(2):250- 260.

  40. Stahl SM, Loonen AJ. The mechanism of drug-induced akathisia. CNS Spectr. 2011;16(1):7-10.

  41. Loonen AJ, Ivanova SA. Circuits regulating pleasure and happiness in major depression. Med Hypotheses. 2016;87:14-21.

  42. Ortega LA, Solano JL, Torres C, Papini MR. Reward loss and addiction: Opportunities for crosspollination. Pharmacol Biochem Behav. 2017;154:39-52.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Mex Neuroci. 2017;18

ARTíCULOS SIMILARES

CARGANDO ...