medigraphic.com
ENGLISH

Revista Clínica de la Escuela de Medicina de la Universidad de Costa Rica

  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2017, Número 6

Siguiente >>

Rev Clin Esc Med 2017; 7 (6)


CRISPR-Cas: Utilidad clínica de la edición genómica como opción terapéutica

Gutiérrez-Albenda D, Salazar-Sánchez L
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 20
Paginas:
Archivo PDF: 224.90 Kb.


PALABRAS CLAVE

Sistemas CRISPR-Cas, biología molecular, edición de genes, utilidad clínica, nucleasa cas.

RESUMEN

El estudio del papel del origen genómico de diversas patologías, entre las cuales podemos citar algunos tipos de cáncer, enfermedades neurodegenerativas y otras, ha abierto la posibilidad de terapias basadas en la edición genómica, técnicas propias de la biología molecular. La principal herramienta de este tipo es la basada en sistemas CRISPR-Cas, cuya implementación en los campos de la terapéutica, promete avances de índole curativa, ya sea actuando sobre la edición de alteraciones o deficiencias de origen genómico o de la programación de respuestas del sistema inmune adecuadas a un tipo de patología.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Castillo A, Castillo A. Gene editing using CRISPR-Cas9 for the treatment of lung cancer. Colomb Médica. diciembre de 2016;47(4):178–80.

  2. Marraffini LA, Sontheimer EJ. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet. marzo de 2010;11(3):181–90.

  3. Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. abril de 2014;32(4):347–55.

  4. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. el 17 de agosto de 2012;337(6096):816–21.

  5. Tian P, Wang J, Shen X, Rey JF, Yuan Q, Yan Y. Fundamental CRISPR-Cas9 tools and current applications in microbial systems. Synth Syst Biotechnol. el 1 de septiembre de 2017;2(3):219–25.

  6. Fagen JR, Collias D, Singh AK, Beisel CL. Advancing the design and delivery of CRISPR antimicrobials. Curr Opin Biomed Eng. el 1 de diciembre de 2017;4(Supplement C):57–64.

  7. Tu Z, Yang W, Yan S, Guo X, Li X-J. CRISPR/Cas9: a powerful genetic engineering tool for establishing large animal models of neurodegenerative diseases. Mol Neurodegener. el 4 de agosto de 2015;10:35.

  8. Kim HS, Bernitz JM, Lee D-F, Lemischka IR. Genomic Editing Tools to Model Human Diseases with Isogenic Pluripotent Stem Cells. Stem Cells Dev. el 15 de noviembre de 2014;23(22):2673–86.

  9. Gebler C, Lohoff T, Paszkowski-Rogacz M, Mircetic J, Chakraborty D, Camgoz A, et al. Inactivation of Cancer Mutations Utilizing CRISPR/Cas9. J Natl Cancer Inst. 2017;109(1).

  10. Cyranoski D. CRISPR gene-editing tested in a person for the first time. Nature. 24 de 2016;539(7630):479.

  11. Cyranoski D. Chinese scientists to pioneer first human CRISPR trial. Nat News. el 28 de julio de 2016;535(7613):476.

  12. Arend MC, Pereira JO, Markoski MM, Arend MC, Pereira JO, Markoski MM. The CRISPR/Cas9 System and the Possibility of Genomic Edition for Cardiology. Arq Bras Cardiol. enero de 2017;108(1):81–3.

  13. Ding Q, Strong A, Patel KM, Ng S-L, Gosis BS, Regan SN, et al. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ Res. el 15 de agosto de 2014;115(5):488–92.

  14. Kampmann M. A CRISPR Approach to Neurodegenerative Diseases. Trends Mol Med. junio de 2017;23(6):483–5.

  15. Yang W, Tu Z, Sun Q, Li X-J. CRISPR/Cas9: Implications for Modeling and Therapy of Neurodegenerative Diseases. Front Mol Neurosci [Internet]. el 28 de abril de 2016 [citado el 11 de diciembre de 2017];9. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC4848312/

  16. Greene AC. CRISPR-Based Antibacterials: Transforming Bacterial Defense into Offense. Trends Biotechnol [Internet]. el 17 de noviembre de 2017 [citado el 9 de noviembre de 2017]; Disponible en: http://www.sciencedirect. com/science/article/pii/S0167779 917302858

  17. Travis J. Making the cut. Science. el 18 de diciembre de 2015;350(6267):1456–7.

  18. Hirsch F, Lévy Y, Chneiweiss H. CRISPRCas9: A European position on genome editing. Nature. 04 de 2017;541(7635):30.

  19. Olson S, Committee on Science T, Affairs P and G, National Academies of Sciences E. International Summit on Human Gene Editing: A Global Discussion [Internet]. National Academies Press (US); 2016 [citado el 11 de noviembre de 2017]. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK3 43651/

  20. Storz U. CRISPR cas9 − licensing the unlicensable. J Biotechnol [Internet]. el 14 de noviembre de 2017 [citado el 23 de noviembre de 2017]; Disponible en: http://www.sciencedirect. com/science/article/pii/S01681 65617317388




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Clin Esc Med. 2017;7

ARTíCULOS SIMILARES

CARGANDO ...