Entrar/Registro  
INICIO ENGLISH
 
TIP Revista Especializada en Ciencias Químico-Biológicas
   
MENÚ

Contenido por año, Vol. y Num.

Índice de este artículo

Información General

Instrucciones para Autores

Mensajes al Editor

Directorio






>Revistas >TIP Revista Especializada en Ciencias Químico-Biológicas >Año 2005, No. 2


Serment-Guerrero J, Breña-Valle M, Espinosa-Aguirre J
La respuesta SOS en Escherichia coli
TIP Rev Esp Cienc Quim Biol 2005; 8 (2)

Idioma: Español
Referencias bibliográficas: 46
Paginas: 99-105
Archivo PDF: 435.39 Kb.


Texto completo




RESUMEN

Todos los organismos están expuestos a sufrir el ataque de diversos agentes que pueden alterar la estructura química básica de su material genético, como la luz ultravioleta, metabolitos como las aflatoxinas que producen los hongos, o incluso especies reactivas de oxígeno que se generan como producto de la respiración. Para contrarrestar tal efecto a lo largo de la evolución se han desarrollado y seleccionado diferentes estrategias o mecanismos que le permiten sobreponerse a dichas eventualidades. Dentro de éstas se encuentra la respuesta SOS, durante la cual se incrementa la expresión de un grupo de genes cuya función es la de reparar el daño en el DNA y conferir a la célula más oportunidades de sobreponerse y sobrevivir en condiciones de estrés.


Palabras clave: lexA, recA, reparación de DNA, respuesta SOS.


REFERENCIAS

  1. Sutton, M.D., Smith, B.T., Godoy, V.G. & Walker, C.G. The SOS response: Recent insights into umuDC-dependent mutagenesis and DNA damage tolerance. Annu. Rev. Genet. 34:479-497 (2000).

  2. Weigle, J.J. Induction of mutation in a bacterial virus. Proc. Natl. Acad. Sci. USA 39:628-636 (1953).

  3. Defais, M., Fauquet, P., Radman, M. & Errera, M. Ultraviolet reactivation and ultraviolet mutagenesis of ? in different genetic systems. Virology 43:495-503 (1971).

  4. Radman, M. Phenomenology of an inducible mutagenic DNA repair pathway in Escherichia coli: SOS repair hypothesis; in Molecular and Environmental Aspects of Mutagenesis (eds. Sherman, S., Miller, M., Laurence, C. & Tabor, W.H.) 128-142 (Charles C. Thomas Publisher, Springfield, USA, 1976).

  5. Gudas, L.J. & Pardee, A.B. Model for regulation of Escherichia coli DNA repair functions. Proc. Natl. Acad. Sci. USA 72:2330-2334 (1975).

  6. Roberts, J.W., Roberts, C.W. & Craig, N.L. Escherichia coli recA gene product inactivates phage lambda repressor. Proc. Natl. Acad. Sci. USA, 75:4714-4718 (1975).

  7. Little, J.W., Edmiston, S.H., Pacelli, L.Z. & Mount, D.W. Cleavage of Escherichia coli LexA protein by RecA protease. Proc. Natl. Acad. Sci. USA 77:3225-3229 (1980).

  8. Little, J.W. & Mount, D.W. The SOS regulatory system of Escherichia coli. Cell 29:11-22 (1982).

  9. Brent, R. & Ptashne, M. Mechanism of action of the lexA gene product. Proc. Natl. Acad. Sci. USA 78:4204-4208 (1981).

  10. Schnarr, M., Pouyet, J., Granger-Schnarr, M. & Daune, M. Large-scale purification, oligomerization, equilibria, and specific interaction of the LexA repressor of Escherichia coli. Biochemistry 24:2812-2818 (1985).

  11. Thliveris, A.T., Little, J.W. & Mount, D.W. Repression of the Escherichia coli recA gene requires at least two LexA protein monomers. Biochimie 73:449-455 (1991).

  12. Lewis, L.K., Harlow, G.R., Gregg-Jolly, L.A. & Mount, D.W. Identification of high affinity binding sites for LexA which define new DNA damage-inducible genes in Escherichia coli. J. Mol. Biol. 241:507-523 (1994).

  13. Schnarr, M., Oertel-Buchheit, P., Kazmaier, M. & Granger-Schnarr, M. DNA binding properties of the LexA repressor. Biochimie 73:423-431 (1991).

  14. Quillardet, P., Moreau, P.L., Ginsburg, H., Mount, D.W. & Devoret, R. Cell survival, UV reactivation and induction of prophage lambda in Escherichia coli K12 overproducing recA protein. Mol. Gen. Genet. 188:37-43 (1982).

  15. Little, J.W., Mount, D.W. & Yanisch-Perron, C.R. Purified LexA protein is a repressor of the recA and lexA genes. Proc. Natl. Acad. Sci. USA 78:4199-4203 (1981).

  16. Little, J.W. Autodigestion of LexA and phage ? repressors. Proc. Natl. Acad. Sci. USA 81:1375-1379 (1984).

  17. Higashitani, N., Higashitani, A. & Horiuchi, K. SOS induction in Escherichia coli by single-stranded DNA of mutant filamentous phage: monitoring by cleavage of LexA repressor. J. Bacteriol. 177:3610-3612 (1995).

  18. Sassanfar, M. & Roberts, J.W. Nature of the SOS-inducing signal in Escherichia coli: the involvement of DNA replication. J. Mol. Biol. 212:79-96 (1990).

  19. Breña-Valle, M. & Serment-Guerrero, J. SOS induction by gamma radiation in Escherichia coli strains defective in repair and/or recombination mechanisms. Mutagenesis 13:637-641 (1998).

  20. Tavera, L., Breña, M., Pérez, M., Serment, J. & Balcázar, M. Response to alpha and gamma radiations of Escherichia coli strains defective in repair or protective mechanisms. Radiat. Meas. 36:591-595 (2003).

  21. Umezu, K. & Kolodner, R. Biochemical interaction of the Escherichia coli RecF, RecO and RecR proteins with RecA protein and single-stranded DNA binding protein. Proc. Natl. Acad. Sci. USA 90:3875-3879 (1993).

  22. Whitby, M.C. & Lloyd, R.G. Altered SOS induction associated with mutations in recF, recO and recR. Mol. Gen. Genet. 246:174-179 (1995).

  23. Kenyon, C.J. & Walker, G.C. DNA-damaging agents stimulate gene expression at specific loci in Escherichia coli. Proc. Natl. Acad. Sci. USA 77:2819-2823 (1980).

  24. Fernández de Henestrosa, A.R., et al. Identification of additional genes belonging to the LexA regulon in Escherichia coli. Mol. Microbiol. 35:1560-1572 (2000).

  25. Courcelle, J., Khodursky, A., Peter, B., Brown, P.O. & Hanawalt, P. Comparative gene expression profiles following UV exposure in wild-type and SOS deficient Escherichia coli. Genetics 158:41-64 (2001).

  26. Yeiser, B., Pepper, E.D., Goodman, M.F. & Finkel, S.E. SOS-induced DNA polymerases enhance long-term survival and evolutionary fitness. Proc. Natl. Acad. Sci. USA 99:8737–8741 (2002).

  27. Napolitano, R., Janel-Bintz, R., Wagner, J. & Fuchs, R.P. All three SOS-inducible DNA polymerases (Pol II, Pol IV and Pol V) are involved in induced mutagenesis, EMBO J. 19:6259–6265 (2000).

  28. Ramírez, B.E., Voloshin, O.N., Camerini-Otero, R.D. & Bax, A. Solution structure of DinI provides insight into its mode of RecA inactivation. Protein Sci. 9:2161-2169 (2000).

  29. Voloshin, O.N., Ramírez, B.E., Bax, A. & Camerini-Otero, R.D. A model for the abrogation of the SOS response by an SOS protein: a negatively charged helix in DinI mimics DNA in its interaction with RecA. Genes Dev. 15:415-427 (2001).

  30. Stohl, E.A., et al. Escherichia coli RecX inhibits RecA recombinase and coprotease activities in vitro and in vivo. J. Biol. Chem. 278:2278-2285 (2003).

  31. Lusetti, S.L., Dress, J.C., Stohl, E.A., Seifert, H.S. & Cox, M.M. The DinI and RecX proteins are competing modulators of RecA function. J. Biol. Chem. 279:55073-55079 (2004).

  32. McGrew, D.A. & Knight, K.L. Molecular design and functional organization of the RecA protein. Crit. Rev. Biochem. Mol. Biol. 38:385-432 (2003).

  33. Roca, A.I. & Cox, M.M. RecA protein: Structure, function, and role in recombinational DNA repair. Prog. Nucleic Acids Res. Mol. Biol. 56:129-223 (1997).

  34. Lusetti, S.L. & Cox, M.M. The bacterial RecA protein and the recombinational DNA repair of stalled replication forks. Annu. Rev. Biochem. 71:71-100 (2002).

  35. Pugh, B.F. & Cox, M.M. General mechanisms for RecA protein binding in duplex DNA. J. Mol. Biol. 203:479-493 (1988).

  36. Tracy, R.B., Chedin, F. & Kowalczykowski, S.C. The recombination hot spot chi is embedded within islands of preferred DNA pairing sequences in the E. coli genome. Cell. 90:205-206 (1997).

  37. Egelman, E.H. & Stasiak, A. Structure of helical RecA-DNA complexes. Complexes formed in the presence of ATP-?-S or ATP. J. Mol. Biol. 191:677-697 (1986).

  38. Yu, X. & Egelman, E.H. Structural data suggest that the active and inactive forms of the RecA filament are not simply interconvertible. J. Mol. Biol. 227:334-346 (1992).

  39. Kuzminov, A. Recombinational repair of DNA damage in Escherichia coli and bacteriophage ?. Acad. Microbiol. Mol. Biol. Rev. 63:751-813 (1999).

  40. Arnold, D.A. & Kowalksykowski, S.C. Facilitated loading of RecA protein is essential to recombination by RecBCD enzyme. J. Biol. Chem. 275:12261-12265 (2000).

  41. Bork, J.M., Cox, M.M. & Inman, R.B. The RecOR proteins modulate RecA protein function at 5’ ends of single- stranded DNA. EMBO J. 20:7313-7322 (2001).

  42. Alcántara, D., Breña, M. & Serment, J. Divergent adaptation of Escherichia coli to cyclic ultraviolet light exposures. Mutagenesis 19:349-354 (2004).

  43. Radman, M. Enzymes of evolutionary change. Nature 401:866-869 (1999).

  44. Friedberg, E. & Gerlach, V. Novel DNA polymerases offer clues to the molecular basis of mutagenesis. Cell 98:413-416 (1999).

  45. Walker, G.C. The SOS response of Escherichia coli. In Escherichia coli and Salmonella: Cellular and molecular biology (ed. Neidhardt, F.C., et al.) 1400-1416 (ASM Press, Washington, DC, 1996).

  46. Janion, C. Some aspects of the SOS response system- A critical survey. Acta Biochim. Polon. 48:599-610 (2001).



>Revistas >TIP Revista Especializada en Ciencias Químico-Biológicas >Año2005, No. 2
 

· Indice de Publicaciones 
· ligas de Interes 






       
Derechos Resevados 2019