medigraphic.com
ENGLISH

Investigación en Salud

Centro Universitario de Ciencias de la Salud de la Universidad de Guadalajara y del OPD Hospitales Civiles de Guadalajara
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2005, Número 3

<< Anterior Siguiente >>

Inv Salud 2005; 7 (3)


Procesamiento y presentación de antígenos lipídicos por moléculas CD1

Alvarado NA, Hernández UMA
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 43
Paginas: 166-170
Archivo PDF: 254.44 Kb.


PALABRAS CLAVE

CD1, procesamiento de antígenos, lípidos, glucolípidos, micobacterias.

RESUMEN

Las moléculas CD1 se clasifican en dos grupos: el grupo 1 incluye las moléculas CD1a, CD1b, CD1c y el grupo 2 CD1d, las cuales interactúan con células T y NKT, respectivamente. A diferencia de las moléculas del MHC, presentan antígenos lipídicos y glucolipídicos de micobacterias. Las moléculas CD1 se localizan en compartimentos intracelulares de las APCs. Existe controversia sobre el procesamiento de los antígenos lipídicos, lo cual influye en la presentación y reconocimiento por células T a través de los TCR. A pesar de los estudios realizados en diferentes modelos experimentales aun se desconocen los mecanismos por los cuales los glucolípidos propios y extraños son diferenciados durante infecciones por micobacterias. La finalidad de esta revisión es mostrar la importancia de la presentación antigénica por moléculas CD1 y su relevancia en la respuesta inmune contra patógenos intracelulares como las micobacterias.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Calabi F, et al. The molecular biology of CD1. Seminars in Immunology, 2000;12:503-509.

  2. Porcelli S. The CD1 family: a third lineage of antigen presenting molecules. Adv Immunol, 1995;59:1-98.

  3. Porcelli SA, et al. The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids. Annu Rev Immunol, 1999;17:297-329.

  4. Zeng Z, et al. Crystal structure of mouse CD1: an MHC like fold with a large hydrophobic binding groove. Science, 1997;277:339-345.

  5. Meil¨¢n A, et al. Molecular recognition of human CD1b antigen complexes: evidence for a common pattern of interaction with ¦Á¦Â TCRs. J Immunol, 2000;165:4494-4504.

  6. Porcelli SA, et al. The CD1 family of lipid antigen presenting molecules. Immunol Today, 1998;19:362.

  7. Garcia KC, et al. An ¦Á¦Â ¦³ cell receptor structure at 2.5 A and its orientation in the TCR-MHC complex. Science, 1996;274:209-19.

  8. Naidenko O, et al. Binding and antigen presentation of ceramide containing glycolipids by soluble mouse and human CD1d molecules. J Exp Med, 1999;190:1069-80.

  9. Han M, et al. Polymorphism of human CD1 genes. Tissue Antigens, 1999;54:122-127.

  10. Behar SM, et al. Susceptibility of mice defi cient in CD1D or TAP 1 to infection with Mycobacterium tuberculosis. J Exp Med, 1999;189:1973-80.

  11. Sugita M, et al. Separate pathways for antigen presentation by CD1 molecules. Immunity, 1999;11:743-752.

  12. Bradbury A, et al. Mouse CD1 is distinct from and co-exists with TL in the same thymus. EMBO J, 1988;7:3081-3086.

  13. Albertson DG, et al. Sensitive and high-resolution in-situ hybridization to human chromosome 4p16.3. EMBO J, 1988;7:2801-2805.

  14. Yu CY, et al. A physical map linking to fi ve CD1 human thymocyte differentiation antigen genes. EMBO J, 1989;8:3727-3732.

  15. Fairhurst RM, et al. CD1 presents antigens from a gram-negative bacterium, Haemophilus infl uenzae type B. Infect Immun, 1998;66:3523-3526.

  16. Bradbury A, et al. Expression of CD1 in the mouse thymus. Eur J Immunol, 1990;20:1831-1836.

  17. Woolfson A, et al. Alternative splicing generates secretoty isoforms of human CD1. Proc Natl Acad Sci USA, 1994;91:6683-6687.

  18. Katabami S, et al. Structural organization of rat CD1 typifi es evolutionarily conserved CD1D class genes. Immunogenetics, 1998;48:22-31.

  19. Kasinrerk W, et al. CD1 molecule expression on human monocytes induced by granulocyte-macrophage colony-stimulating factor. J Immunol, 1993;150:579-584.

  20. Gilleron M, et al. Diacylated sulfoglycolipids are novel mycobacterial antigens stimulating CD1-restricted T cells during infection with Mycobacterium tuberculosis. J Exp Med, 2004;199(5):649-59.

  21. Moody DB, et al. CD1c-mediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection. Nature, 2000;404:884-8.

  22. Rosat JP, et al. CD1 restricted microbial lipid antigen-specifi c recognition found in the CD8+ ¦Á¦Â T-cell pool. J Immunol, 1999;162:366-371.

  23. Schofi eld L, et al. CD1d-restricted immunoglobulin G formation to GPI-anchored antigens mediated by NKT cells. Science, 1999;283:225-9.

  24. Gonz¨¢lez-Aseguinolaza G, et al. ¦Á−galactosylceramide-activated V¦Á14 natural killer T cells mediate protection against murine malaria. Proc Natl Acad Sci USA, 2000;97(15):8461-6.

  25. Kawakami K, et al. Activation of Va14 (+) natural killer T-cells by agalactosylceramide results in development of Th1 response and local host resistance in mice infected with Cryptococcus neoformans. Infect Immun, 2001;69(1):213-220.

  26. Exley MA, et al. CD1d-reactive T-cell activation leads to amelioration of disease caused by diabetogenic encephalomyocarditis virus. J Leukoc Biol, 2001;69(5):713-18.

  27. Smyth MJ, et al. Differential tumor surveillance by natural killer (NK) and NKT cells. J Exp Med, 2000;191:661-668. NKT cells. J Exp Med, 2000;191:661-668.

  28. Moody DB, et al. Structural requirements for glycolipid antigen recognition by CD1b-restricted T cells. Science, 1997;278:283-6.

  29. Castano AR, et al. Peptide binding and presentation by mouse CD1. Science, 1995;269:223-226.

  30. Moody DB, et al. Glycolipid targets of CD1-mediated T-cell responses. Immunol, 2001;104:243-251.

  31. Sugita M, et al. T lymphocyte recognition of human group 1 CD1 molecules: implications for innate and acquired immunity. Semin Immunol, 2000;12:511-16.

  32. Matsuda J, et al. Presentation of self and microbial lipids by CD1 molecules. Curr Opin Immunol, 2001;13:19-25.

  33. Sugita M, et al. New insights into pathways for CD1-mediated antigen presentation. Curr Opin Immunol, 2004;16(1):90-95.

  34. Briken V, et al. CD1b and CD1c isoforms survey different intracellular compartments for presentation of microbial lipid antigens. J Exp Med, 2000;192:281-288.

  35. Sugita M, et al. CD1c molecules broadly survey the endocytic system. Proc Natl Acad Sci USA, 2000;97:8445-8450.

  36. Schaible UE, et al. Intersection of group 1 CD1 molecules and mycobacteria in different intracellular compartments of dendritic cells. J Immunol, 2000;164:4843-4852.

  37. Beatty WL, et al. Traffi cking and release of mycobacterial lipids from infected macrophages. Traffi ck, 2000;1:235-247.

  38. Mills JC, et al. Apoptotic membrane blebbing is regulated by myosin light chain phosphorylation. J Cell Biol, 1998;140:627-636.

  39. Prigozy T, et al. The mannose receptor delivers lipoglycan antigens to endosomes for presentation to T cells by CD1b molecules. Immunity, 1997;6:187-197.

  40. Prigozy TI, et al. Glycolipid antigen processing for presentation by CD1d molecules. Science, 2001;291:664-7.

  41. Moody DB, et al. CD1b-mediated T-cell recognition of a glycolipid antigen generated from mycobacterial lipid and host carbohydrate during infection. J Exp Med, 2000;192:965-76.

  42. Sugita M, et al. T lymphocyte recognition of human group 1 CD1 molecules: implications for innate and acquired immunity. Semin Immunol, 2000;12:511-16.

  43. De Libero G, et al. Recognition of lipid antigens by T cells. Nature, 2005;5:485-96.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Inv Salud. 2005;7

ARTíCULOS SIMILARES

CARGANDO ...