Entrar/Registro  
INICIO ENGLISH
 
Medicina Crítica
   
MENÚ

Contenido por año, Vol. y Num.

Índice de este artículo

Información General

Instrucciones para Autores

Mensajes al Editor

Directorio






>Revistas >Medicina Crítica >Año 2018, No. 3


Torres GE, Mendoza PE, Mendoza RM
Índice de asincronía/péptido natriurético cerebral como predictor de éxito en extubación en pacientes con trauma de tórax
Rev Asoc Mex Med Crit y Ter Int 2018; 32 (3)

Idioma: Español
Referencias bibliográficas: 28
Paginas: 121-125
Archivo PDF: 161.95 Kb.


Texto completo




RESUMEN

Antecedentes: El trauma de tórax (TT) requiere estrategias de ventilación mecánica (VM) específicas y el retiro es complejo; la asincronía ventilatoria (AV) aumenta la morbimortalidad, situación no descrita en la población mexicana.
Objetivo: Correlacionar el índice de asincronía (IA)/péptido natriurético cerebral (BNP) (IA/BNP), con el resultado de la extubación en pacientes con TT.
Material y métodos: Se realizó un estudio longitudinal en unidades de cuidados intensivos (UCI) con 30 participantes con variables de estudio demográficas, tipo de TT, IA, BNP pre- (BNP1) y postdecanulación (BNP2), IA/BNP, escalas predictoras de extubación. Desenlace: éxito o fracaso en la extubación (reintubación en las primeras 48 horas).
Resultados: Los participantes representaron 96.7% masculino, 3.3% femenino; edad: 34.4 ± 11.2 años; éxito en el retiro de la VM: 70%; tipo de TT: neumotórax/hemotórax 40%, hemotórax aislado 16.7%, neumotórax 10%, tórax inestable/contusión pulmonar 10%, otras variedades de lesión 23.3%. BNP1: 44.2 ± 23.2 pg/dL, BNP2: 67 ± 49 pg/dL, IA: 13 ± 2%, IA/BNP: 0.28 ± 0.15, índice de ventilación rápida y superficial (IVRS): 83.2 ± 13.1, MIP: -24.2 ± 3.07, P 0.1-3.9 ± 0.7. La correlación de Pearson para IA y BNP1 fue r = 0.71, el índice de determinación: r2 = 0.50, con significancia p ‹ 0.001, a un intervalo de confianza (IC) 95%; para IA y BNP2: r = 0.83, r2 = 0.68, p ‹ 0.001, IC 95%. La correlación de Spearman para IA/BNP y fallo: r = 0.62, el índice de determinación: r2 = 0.39, con significancia p ‹ 0.001, a un intervalo de confianza (IC) 95%; para IVRS y fallo: r = 0.31, r2 = 0.09, p ‹ 0.094, IC 95%. IA/BNP ‹ 0.14 se correlacionó con fallo en la extubación.
Conclusiones: Se demostró que el IA/BNP ‹ 0.14 es un marcador confiable como predictor del fallo en el retiro de la VM en las primeras 48 horas, comparado con el tradicional IVRS, el cual no demostró significancia estadística.


Palabras clave: Asincronía, BNP, extubación, trauma de tórax, ventilación mecánica.


REFERENCIAS

  1. Abdala YA. Historia y evolución de la ventilación mecánica. Rev CONAREC. 2012;82:188-198.

  2. Carrillo ER. Ventilación mecánica. 1a ed. México D.F.: Editorial Alfil. Academia Mexicana de Cirugía; 2013.

  3. Metnitz PG, Metnitz B, Moreno RP, Bauer P, del Sorbo L, Hoermann C, et al. Epidemiology of mechanical ventilation: analysis of the SAPS 3 data base. Intensive Care Med. 2009;35(5):816-825.

  4. Martin J, Tobin MD. Advances in mechanical ventilation. N Engl J Med. 2001;344(26):1986-1996.

  5. Mellott KG, Grap MJ, Munro CL, Sessler CN, Wetzel PA, Nilsestuen JO, et al. Patient ventilator asynchrony in critically ill adults: frequency and types. Heart Lung. 2014;43(3):231-243.

  6. MacIntyre NR. Patient-ventilator interactions: optimizing conventional ventilation modes. Respir Care. 2012;56(1):73-84.

  7. Mellott KG, Grap MJ, Munro CL, Sessler CN, Wetzel PA. Patient-ventilator dyssynchrony clinical significance and implications for practice. Crit Care Nurse. 2009;29(6):41-55.

  8. Dres M, Rittayamai N, Brochard L. Monitoring patient-ventilator asynchrony. Curr Opin Crit Care. 2016;22(3):246-253. doi: 10.1097/MCC.0000000000000307.

  9. Nilsestuen JO, Hargett KD. Using ventilator graphics to identify patient-ventilator asynchrony. Respir Care. 2005;50(2):202-232.

  10. De Wit M. Monitoring of patient-ventilator interaction at the bedside. Respir Care. 2011;56(1):61-72.

  11. Murias G, Lucangelo U, Blanch L. Patient-ventilator asynchrony. Curr Opin Crit Care. 2016;22(1):53-59. doi: 10.1097/MCC.0000000000000270.

  12. Blokpoel RG, Burgerhof JG, Markhorst DG, Kneyber MC. Patient-ventilator asynchrony during assisted ventilation in children. Pediatr Crit Care Med. 2016;17(5):e204-11. doi: 10.1097/PCC.0000000000000669.

  13. Chao DC, Scheinhorn DJ, Stearn-Hassenpflug M. Patient-ventilator trigger asynchrony in prolonged mechanical ventilation. Chest. 1997;112(6):1592-1599.

  14. Yonis H, Crognier L, Conil JM. Patient-ventilator synchrony in neurally adjusted ventilatory assist (NAVA) and pressure support ventilation (PSV): a prospective observational study. BMC Anesthesiol. 2015;15:117. doi: 10.1186/s12871-015-0091-z

  15. Vasconcelos RS, Melo LH, Sales RP, Marinho LS, Deulefeu FC, Reis RC, et al. Effect of an automatic triggering and cycling system on comfort and patient-ventilator synchrony during pressure support ventilation. Respiration. 2013;86(6):497-503.

  16. Robinson BR, Blakeman TC, Toth P, Hanseman DJ, Mueller E, Branson RD. Patient-ventilator asynchrony in a traumatically injured population. Respir Care. 2013;58(11):1847-1855.

  17. Messina A, Colombo D, Cammarota G, De Lucia M, Cecconi M, Antonelli M, et al. Patient-ventilator asynchrony affects pulse pressure variation prediction of fluid responsiveness. J Crit Care. 2015;30(5):1067-1071. doi: 10.1016/j.jcrc.2015.06.010

  18. Branson RD, Blakeman TC, Robinson BR. Asynchrony and dyspnea. Respir Care. 2013;58(6):973-989.

  19. Carlucci A, Pisani L, Ceriana P, Malovini A, Nava S. Patient-ventilator asynchronies: may the respiratory mechanics play a role? Crit Care. 2013;17(2):R54.

  20. Carrillo ER, Cruz SJ, Rojo MO, Romero GJ. Asincronía en la ventilación mecánica. Conceptos actuales. Rev Asoc Mex Med Crit y Ter Int. 2016;30(1):48-54.

  21. Boles JM, Bion J, Connors A, Herridge M, Marsh B, Melot C, et al. Weaning from mechanical ventilation. Eur Respir J. 2007;29(5):1033-1056.

  22. Lermitte J, Garfield MJ. Weaning from mechanical ventilation. Continuing Education in Anaesthesia, Critical Care & Pain. 2005;5(4):113-117.

  23. Kulkarni AP, Agarwal V. Extubation failure in intensive care unit: predictors and management. Indian J Crit Care Med. 2008; 12(1):1-9.

  24. Kollef MH, Shapiro SD, Silver P, St John RE, Prentice D, Sauer S, et al. A randomized, controlled trial of protocol-directed versus physician directed weaning from mechanical ventilation. Crit Care Med. 1997;25(4):567-574.

  25. Kacmarek RM, Pirrone M, Berra L. Assisted mechanical ventilation: the future is now. BMC Anesthesiol. 2015;15:110. doi. org/10.1186/s12871-015-0092-y

  26. Dries DJ. Assisted ventilation. J Burn Care Res. 2016;37(2):75-85. doi: 10.1097/BCR.0000000000000231

  27. Farghaly S, Galal M, Hasan AA, Nafady A. Brain natriuretic peptide as a predictor of weaning from mechanical ventilation in patients with respiratory illness. Aust Crit Care. 2015;28(3):116-121.

  28. Richter T, Ragaller M. Ventilation in chest trauma. J Emerg Trauma Shock. 2011;4(2):251-259.



>Revistas >Medicina Crítica >Año2018, No. 3
 

· Indice de Publicaciones 
· ligas de Interes 






       
Derechos Resevados 2019