medigraphic.com
ENGLISH

Salud Pública de México

Instituto Nacional de Salud Pública
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2018, Número 4

<< Anterior Siguiente >>

salud publica mex 2018; 60 (4)


Percepción del gusto como factor de riesgo para obesidad infantil

Ariza AC, Sánchez-Pimienta TG, Rivera JA
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 41
Paginas: 472-478
Archivo PDF: 247.28 Kb.


PALABRAS CLAVE

obesidad infantil, percepción del gusto, factores de riesgo.

RESUMEN

Objetivo. Describir el papel de la percepción del gusto como factor de riesgo para el desarrollo de obesidad en niños. Material y métodos. Se realizó una búsqueda inicial de artículos científicos publicados en PubMed entre el 1 de enero de 2011 y el 20 de marzo de 2016 para el tema sobrepeso y obesidad en niños de entre 0 y 12 años. Los algoritmos utilizados fueron (Obesity OR Overweight) AND Taste perception, Satiation, Satiety response, Appetite, Appetite regulation, Habituation, Taste receptors [MeSH] y PROP phenotype. En búsquedas subsecuentes se incluyeron artículos previos y posteriores a la fecha de la búsqueda general (hasta mayo 2018). Resultados. Las preferencias por los sabores inician desde la gestación, por lo que los niños que son expuestos a sabores dulces en etapas tempranas de la infancia aumentan su riesgo de habituación a éstos. Asimismo, las experiencias hedónicas dadas por la ingestión de alimentos y bebidas dulces refuerzan el consumo de estos alimentos, lo que propicia la selección de productos o bebidas de sabor dulce en etapas posteriores. Estas preferencias se han asociado con el desarrollo de obesidad en los niños. Las variantes genéticas relacionadas con la percepción del gusto también pueden contribuir a la selección de cierto tipo de alimentos. Sin embargo, su relación con una mayor ingestión de energía, así como con un mayor peso corporal, ha sido poco explorada y ha mostrado resultados inconsistentes. Conclusiones. Se requiere más evidencia para entender las interacciones ambientales y genéticas de la percepción del gusto, a fin de considerarlo un factor más en las intervenciones de política pública.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Organización Mundial de la Salud. Estrategia mundial sobre régimen alimentario, actividad física y salud: sobrepeso y obesidad infantiles. Ginebra: OMS, 2018 [consultado febrero 19, 2017]. Disponible en: http://www.who. int/dietphysicalactivity/childhood/es/

  2. Messiah SE, Arheart KL, Natale RA, Hlaing WM, Lipshultz SE, Miller TL. BMI, waist circumference, and selected cardiovascular disease risk factors among preschool-age children. Obesity (Silver Spring). 2012;20(9):1942-9. https://doi.org/10.1038/oby.2011.353

  3. Vander-Wal JS, Mitchell ER. Psychological complications of pediatric obesity. Pediatr Clin North Am. 2011;58(6):1393-401. https://doi. org/10.1016/j.pcl.2011.09.008

  4. Graversen L, Sorensen TI, Petersen L, Sovio U, Kaakinen M, Sandbaek A, et al. Preschool weight and body mass index in relation to central obesity and metabolic syndrome in adulthood. PloS One. 2014;9(3):e89986. https://doi.org/10.1371/journal.pone.0089986

  5. Llewellyn A, Simmonds M, Owen CG, Woolacott N. Childhood obesity as a predictor of morbidity in adulthood: a systematic review and metaanalysis. Obes Rev. 2016;17(1):56-67. https://doi.org/10.1111/obr.12316

  6. Kumar S, Kelly AS. Review of childhood obesity: from epidemiology, etiology, and comorbidities to clinical assessment and treatment. Mayo Clin Proc. 2017;92(2):251-265. https://doi.org/10.1016/j.mayocp. 2016.09.017

  7. Liem DG, Mennella JA. Sweet and sour preferences during childhood: role of early experiences. Dev Psychobiol. 2002;(4):388-95. https://doi. org/10.1002/dev.10067

  8. Sánchez-Pimienta TG, Batis C, Lutter CK, Rivera JA. Sugar-Sweetened Beverages Are the Main Sources of Added Sugar Intake in the Mexican Population. J Nutr. 2016;146(9):1888S-96S. https://doi.org/10.3945/ jn.115.220301

  9. Shamah-Levy T, Cuevas-Nasu L, Gómez-Acosta LM, Morales-Ruan MC, Méndez Gómez-Humarán I, Robles-Villaseñor MN, Hernández-Ávila M. Efecto del programa de servicios SaludArte en los componentes de alimentación y nutrición en escolares de la Ciudad de México. Salud Publica Mex. 2017;59(6):621-9. https://doi.org/10.21149/8116

  10. Araneda J, Bustos P, Cerecera F, Amigo H. [Intake of sugar-sweetened non-alcoholic beverages and body mass index: A national sample of Chilean school children]. Salud Publica Mex. 2015;57(2):128-34. https://doi. org/10.21149/spm.v57i2.7408

  11. Hayes JE, Feeney EL, Allen AL. Do polymorphisms in chemosensory genes matter for human ingestive behavior? Food Qual Prefer. 2013;30(2):202-16. https://doi.org/10.1016/j.foodqual.2013.05.013

  12. Keller KL, Olsen A, Cravener TL, Bloom R, Chung WK, Deng L, et al. Bitter taste phenotype and body weight predict children’s selection of sweet and savory foods at a palatable test-meal. Appetite. 2014; 77:113-21. https://doi.org/10.1016/j.appet.2014.02.019

  13. Oftedal KN, Tepper BJ. Influence of the PROP bitter taste phenotype and eating attitudes on energy intake and weight status in pre-adolescents: a 6-year follow-up study. Physiol Behav. 2013;118:103-11. https://doi. org/10.1016/j.physbeh.2013.05.016

  14. Mennella JA, Beauchamp GK. The role of early life experiences in flavor perception and delight. In: Dubé L, Bechara A, Dagher A, Drewnowski A, et al. Obesity prevention: The role of brain and society on individual behavior. EUA: Academic Press, Elsevier, 2010. https://doi.org/10.1016/ B978-0-12-374387-9.00016-7

  15. Li X, Staszewski L, Xu H, Durick K, Zoller M, Adler E. Human receptors for sweet and umami taste. Proc Natl Acad Sci USA. 2002;99(7):4692- 6. https://doi.org/10.1073/pnas.072090199

  16. Coddou C, Yan Z, Obsil T, Huidobro-Toro JP, Stojilkovic SS. Activation and regulation of purinergic P2X receptor channels. Pharmacol Rev. 2011;63(3):641-83. https://doi.org/10.1124/pr.110.003129

  17. de Araujo IE, Oliveira-Maia AJ, Sotnikova TD, Gainetdinov RR, Caron MG, Nicolelis MA, Simon SA. Food reward in the absence of taste receptor signaling. Neuron. 2008;57(6):930-41. https://doi.org/10.1016/j. neuron.2008.01.032

  18. Sukumaran SK, Yee KK, Iwata S, Kotha R, Quezada-Calvillo R, Nichols BL, et al. Taste cell-expressed α-glucosidase enzymes contribute to gustatory responses to disaccharides. Proc Natl Acad Sci USA. 2016;113(21):6035-40. https://doi.org/10.1073/pnas.1520843113

  19. Drewnowski A, Mennella JA, Johnson SL, Bellisle F. Sweetness and food preference. J Nutr. 2012;142(6):1142S-8S. https://doi.org/10.3945/ jn.111.149575

  20. Leterme A, Brun L, Dittmar A, Robin O. Autonomic nervous system responses to sweet taste: evidence for habituation rather than pleasure. Physiol Behav. 2008; 93(4-5): 994-999. https://doi.org/10.1016/j.physbeh. 2008.01.005

  21. Schiffman SS, Graham BG. Elevated and sustained desire for sweet taste in african-americans: a potential factor in the development of obesity. Nutrition. 2000;16(10):886-93. https://doi.org/10.1016/S0899- 9007(00)00403-2

  22. Desor JA, Greene LS, Maller O. Preferences for sweet and salty in 9- to 15-year-old and adult humans. Science. 1975;190(4215):686-7. https:// doi.org/10.1126/science.1188365

  23. Mennella JA, Finkbeiner S, Reed DR. The proof is in the pudding: children prefer lower fat but higher sugar than do mothers. Int J Obes (Lond). 2012;36(10):1285-91. https://doi.org/10.1038/ijo.2012.51

  24. Mennella JA, Beauchamp GK. Maternal diet alters the sensory qualities of human milk and the nursling’s behavior. Pediatrics. 1991;88(4):737-44.

  25. Beauchamp GK, Moran M. Dietary experience and sweet taste preference in human infants. Appetite. 1982;3(2):139-52. https://doi. org/10.1016/S0195-6663(82)80007-X

  26. Beauchamp GK, ver Moran M. Acceptance of sweet and salty tastes in 2-year-old children. Appetite. 1984;5(4):291-305. https://doi.org/10.1016/ S0195-6663(84)80002-1

  27. Pepino MY, Mennella JA. Factors contributing to individual differences in sucrose preference. Chem Senses. 2005;30(suppl 1):i319-20. https://doi. org/10.1093/chemse/bjh243

  28. Epstein LH, Leddy JJ, Temple JL, Faith MS. Food reinforcement and eating: a multilevel analysis. Psychol Bull. 2007;133(5):884-906. https://doi. org/10.1037/0033-2909.133.5.884

  29. Epstein LH, Carr KA, Scheid JL, Gebre E, O’Brien A, Paluch RA, Temple JL. Taste and food reinforcement in non-overweight youth. Appetite. 2015;91:226-32. https://doi.org/10.1016/j.appet.2015.04.050

  30. Temple JL, Legierski CM, Giacomelli AM, Salvy SJ, Epstein LH. Overweight children find food more reinforcing and consume more energy than do non-overweight children. Am J Clin Nutr. 2008;87(5):1121- 7. https://doi.org/10.1093/ajcn/87.5.1121

  31. Spetter MS, Smeets PA, de Graaf C, Viergever MA. Representation of sweet and salty taste intensity in the brain. Chem Senses. 2010;35(9):831- 40. https://doi.org/10.1093/chemse/bjq093

  32. Rudenga K, Green B, Nachtigal D, Small DM. Evidence for an integrated oral sensory module in the human anterior ventral insula. Chem Senses. 2010;35(8):693-703. https://doi.org/10.1093/chemse/bjq068

  33. Jacquin-Piques A, Mouillot T, Gigot V, Meillon S, Leloup C, Penicaud L, Brondel L, et al. Preference for Sucrose Solutions Modulates Taste Cortical Activity in Humans. Chem Senses. 2016 S;41(7):591-9.

  34. Boutelle KN, Wierenga CE, Bischoff-Grethe A, Melrose AJ, Grenesko- Stevens E, Paulus MP, et al. Increased brain response to appetitive tastes in the insula and amygdala in obese compared with healthy weight children when sated. Int J Obes (Lond). 2015;39(4):620-8. https://doi.org/10.1038/ ijo.2014.206

  35. Eny KM, Wolever TM, Corey PN, El-Sohemy A. Genetic variation in TAS1R2 (Ile191Val) is associated with consumption of sugars in overweight and obese individuals in 2 distinct populations. Am J Clin Nutr. 2010;92(6):1501-10. https://doi.org/10.3945/ajcn.2010.29836

  36. Ramos-Lopez O, Panduro A, Martinez-Lopez E, Roman S. Sweet Taste Receptor TAS1R2 polymorphism (Val191Val) is associated with a higher carbohydrate intake and hypertriglyceridemia among the population of West Mexico. Nutrients. 2016;8(2):101-13. https://doi.org/10.3390/ nu8020101

  37. Fushan AA, Simons CT, Slack JP, Manichaikul A, Drayna D. Allelic polymorphism within the TAS1R3 promoter is associated with human taste sensitivity to sucrose. Curr Biol. 2009;19(15):1288-93. https://doi. org/10.1016/j.cub.2009.06.015

  38. Drewnowski A, Henderson SA, Shore AB. Genetic sensitivity to 6-npropylthiouracil (PROP) and hedonic responses to bitter and sweet tastes. Chem Senses. 1997;22(1):27-37. https://doi.org/10.1093/chemse/22.1.27

  39. Keller KL, Adise S. Variation in the ability to taste bitter thiourea compounds: implications for food acceptance, dietary intake, and obesity risk in children. Annu Rev Nutr. 2016;17(36):157-82. https://doi.org/10.1146/ annurev-nutr-071715-050916

  40. Burd C, Senerat A, Chambers E, Keller KL. PROP taster status interacts with the built environment to influence children’s food acceptance and body weight status. Obesity (Silver Spring). 2013;21(4):786-94. https:// doi.org/10.1002/oby.20059

  41. Joseph PV, Reed DR, Mennella JA. Individual differences among children in sucrose detection thresholds: relationship with age, gender, and bitter taste genotype. Nurs Res. 2016;65(1):3-12.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

salud publica mex. 2018;60

ARTíCULOS SIMILARES

CARGANDO ...