medigraphic.com
ENGLISH

Revista de Investigación Clínica

Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2018, Número 5

<< Anterior Siguiente >>

Rev Invest Clin 2018; 70 (5)


Genomics and Systems Biology Approaches in the Study of Lipid Disorders

Rodríguez A, Pajukanta P
Texto completo Cómo citar este artículo

Idioma: Ingles.
Referencias bibliográficas: 38
Paginas: 217-223
Archivo PDF: 175.44 Kb.


PALABRAS CLAVE

Sin palabras Clave

RESUMEN

Sin resumen.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. 2004;431:931-45.

  2. The International HapMap Consortium. A haplotype map of the human genome. Nature. 2005;437:1299-320.

  3. The 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature. 2010;467:1061-73.

  4. Visscher PM, Wray NR, Zhang Q, et al. 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet. 2017;101:5-22.

  5. Schunkert H, König IR, Kathiresan S, et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet. 2011;43:333-8.

  6. Weissglas-Volkov D, Pajukanta P. Genetic causes of high and low serum HDL-cholesterol. J Lipid Res. 2010;51:2032-57.

  7. MacLellan WR, Wang Y, Lusis AJ. Systems-based approaches to cardiovascular disease. Nat Rev Cardiol. 2012;9:172-84.

  8. Sun YV. Integration of biological networks and pathways with genetic association studies. Hum Genet. 2012;131:1677-86.

  9. Kathiresan S, Willer CJ, Peloso GM, et al. Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet. 2009; 41:56-65.

  10. Teslovich TM, Musunuru K, Smith AV, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466:707-13.

  11. Johansen CT, Wang J, McIntyre AD, et al. Excess of rare variants in non-genome-wide association study candidate genes in patients with hypertriglyceridemia. Circ Cardiovasc Genet. 2012; 5:66-72.

  12. Civelek M, Wu Y, Pan C, et al. Genetic regulation of adipose gene expression and cardio-metabolic traits. Am J Hum Genet. 2017; 100:428-43.

  13. Belbin GM, Odgis J, Sorokin EP, et al. Genetic identification of a common collagen disease in Puerto Ricans via identity-by-descent mapping in a health system. Elife 2017;6:e25060.

  14. Hoffmann TJ, Theusch E, Haldar T, et al. A large electronichealth- record-based genome-wide study of serum lipids. Nat Genet. 2018;50:401-13.

  15. Ng SB, Buckingham KJ, Lee C, et al. Exome sequencing identifies the cause of a Mendelian disorder. Nat Genet. 2010;42:30-5.

  16. Reddy MV, Iatan I, Weissglas-Volkov D, et al. Exome sequencing identifies 2 rare variants for low high-density lipoprotein cholesterol in an extended family. Circ Cardiovasc Genet. 2012;5:538-46.

  17. Pickrell JK, Marioni JC, Pai AA, et al. Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature. 2010;464:768-72.

  18. Pickrell JK, Gilad Y, Pritchard JK. Comment on “Widespread RNA and DNA sequence differences in the human transcriptome”. Science. 2012;335:1302.

  19. Gusev A, Ko A, Shi H, et al. Integrative approaches for largescale transcriptome-wide association studies. Nat Genet. 2016;48:245-52.

  20. Tukiainen T, Kettunen J, Kangas AJ, et al. Detailed metabolic and genetic characterization reveals new associations for 30 known lipid loci. Hum Mol Genet. 2012;21:1444-55.

  21. Inouye M, Ripatti S, Kettunen J, et al. Novel loci for metabolic networks and multi-tissue expression studies reveal genes for atherosclerosis. PLoS Genet. 2012;8:e1002907.

  22. International Consortium for Blood Pressure Genome-Wide Association Studies, Ehret GB, Munroe PB, et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;478:103-9.

  23. Hormozdiari F, van de Bunt M, Segrè AV, et al. Colocalization of GWAS and eQTL signals detects target genes. Am J Hum Genet. 2016;99:1245-60.

  24. Kichaev G, Roytman M, Johnson R, et al. Improved methods for multi-trait fine mapping of pleiotropic risk loci. Bioinformatics. 2017;33:248-55.

  25. Degner JF, Pai AA, Pique-Regi R, et al. DNase I sensitivity QTLs are a major determinant of human expression variation. Nature. 2012;482:390-94.

  26. Roman TS, Mohlke KL. Functional genomics and assays of regulatory activity detect mechanisms at loci for lipid traits and coronary artery disease. Curr Opin Genet Dev. 2018;50:52-9.

  27. Li YI, van de Geijn B, Raj A, et al. RNA splicing is a primary link between genetic variation and disease. Science. 2016;352:600-4.

  28. Taneera J, Lang S, Sharma A, et al. A systems genetics approach identifies genes and pathways for Type 2 diabetes in human islets. Cell Metab. 2012;16:122-34.

  29. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545-50.

  30. Zhang B, Horvath S. A general framework for weighted gene coexpression network analysis. Stat Appl Genet Mol Biol. 2005;4:Article: 17.

  31. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559.

  32. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44-57.

  33. Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1-13.

  34. Haas BE, Horvath S, Pietiläinen KH, Cantor RM, Nikkola E, Weissglas- Volkov D, et al. Adipose co-expression networks across finns and Mexicans identify novel triglyceride-associated genes. BMC Med Genomics. 2012;5:61.

  35. van Eijk KR, de Jong S, Boks MP, et al. Genetic analysis of DNA methylation and gene expression levels in whole blood of healthy human subjects. BMC Genomics. 2012;13:636.

  36. Voineagu I, Wang X, Johnston P, et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature. 2011;474:380-4.

  37. Fuller TF, Ghazalpour A, Aten JE, et al. Weighted gene co-expression network analysis strategies applied to mouse weight. Mamm Genome. 2007;18:463-72.

  38. Chen R, Mias GI, Li-Pook-Than J, et al. Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell. 2012; 148:1293-307.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Invest Clin. 2018;70

ARTíCULOS SIMILARES

CARGANDO ...