medigraphic.com
ENGLISH

Revista de Educación Bioquímica

  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2018, Número 3

<< Anterior Siguiente >>

Rev Educ Bioquimica 2018; 37 (3)


Estudio del transcriptoma mediante RNA-seq con énfasis en las especies vegetales no modelo

Rodríguez-Alonso G, Shishkova S
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 68
Paginas: 75-88
Archivo PDF: 720.74 Kb.


PALABRAS CLAVE

Transcriptoma, RNA-seq, Organismos no modelo, Illumina, Secuenciación masiva.

RESUMEN

Históricamente el desarrollo de la biología se ha limitado al estudio de unas pocas especies, a las cuales conocemos como especies modelo, y cuyas particularidades representan ventajas prácticas para su mantenimiento y estudio en el laboratorio. Sin embargo, la viabilidad actual para secuenciar el genoma y los transcriptomas de virtualmente cualquier especie permite la inclusión de nuevos organismos como modelo de estudio. En esta revisión se presenta una descripción general de las principales plataformas de secuenciación de transcriptomas (RNA-seq), así como los pasos básicos para el ensamblaje de transcriptomas cuando no se cuenta con un genoma de referencia. Finalmente, se proveen algunos ejemplos de estudios de transcriptoma aplicados a organismos no modelo.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Krogh A (1929) The progress of physiology. Science 70:200-204.

  2. Krebs HA (1975) The August Krogh principle: “for many problems there is an animal on which it can be most conveniently studied”. J Exp Zool 194:221-226.

  3. Russell JJ, Theriot JA, Sood P, Marshall WF, Landweber LF, Fritz-Laylin L, Polka JK, Oliferenko S, Gerbich T, Gladfelter A, Umen J, Bezanilla M, Lancaster MA, He S, Gibson MC, Goldstein B, Tanaka EM, Hu CK, Brunet A (2017) Non-model model organisms. BMC Biol 15:55.

  4. Koornneef M, Meinke D (2010) The development of Arabidopsis as a model plant. Plant J 61:909-921.

  5. Rédei GP (1975) Arabidopsis as a genetic tool. Annu Rev Genet 9:111-127.

  6. Somervill C, Kornneef M (2002) A fortunate choice: the history of Arabidopsis as a model plant. Nat Rev Genet 3:883-889.

  7. Bolker J (2012) There’s more to life than rats and flies. Nature 491:31-33.

  8. Alfred J, Baldwin IT (2015) New opportunities at the wild frontier. eLife 4:e06956.

  9. Mora C, Tittlensor DP, Adl S, Simpson AGB, Worm B (2011) How many species are there on Earth and the ocean? PLoS Biol 9:e1001127.

  10. Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48.

  11. Mylona P, Pawlowski K, Bisseling T (1995) Symbiotic Nitrogen Fixation. The Plant Cell 7:869-885.

  12. Read DJ (2003) Towards Ecological Relevance — Progress and pitfalls in the path towards an understanding of mycorrhizal functions in nature. En: Mycorrhizal Ecology. Ecological Studies (Analysis and Synthesis). Editor: van der Heijden MGA, Sanders IR, vol. 157. Springer, Berlin, Heidelberg.

  13. Vicente EJ, Dean DR (2017) Keeping the nitrogen-fixation dream alive. Proc Natl Acad Sci USA. 114:3009-3011.

  14. Goldstein B, King N (2016) The Future of Cell Biology: Emerging model organisms. Trends Cell Biol. 26:818-824.

  15. Gladfelter AS (2015) How nontraditional model systems can save us. Mol. Biol. Cell 26:3687- 3689.

  16. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, Soboleva A. (2012) NCBI GEO: archive for functional genomics data sets - update. Nuc Ac Res 41:D991-D995.

  17. Van Verk MC, Hickman R, Pieterse CM. J, Van Wees SCM (2013) RNA-seq: revelation of the messengers. Trends Plant Sci 18:175-179.

  18. Wang Z, Gersten M, Snyder M (2009) RNAseq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57-63.

  19. Zhao S, Fung-Leung WP, Bittner A, Ngo K, Liu X (2014) Comparison of RNA-seq and microarray in transcriptome profiling of activated T cells. PLoS One 9:e78644.

  20. Johnson MT, Carpenter EJ, Tian Z, Bruskiewich R, Burris JN (2012) Evaluating methods for isolating total RNA and predicting the success of sequencing phylogenetically diverse plant transcriptomes. PLoS One 7:e50226.

  21. Cui P, Lin Q, Ding F, Xin C, Gong W (2010) A comparison between ribo-minus RNAsequencing and polyA-selected RNAsequencing. Genomics 96:259-265.

  22. Ari Ş, Arikan M (2016) Next-Generation Sequencing: Advantages, disadvantages, and future. En: Plant Omics: Trends and Applications. Editor: Hakeem K, Tombuloğlu H, Tombuloğlu G. Springer, Cham, Switzerland.

  23. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR, Boutell JM, Bryant J, Carter RJ, Keira Cheetham R, Cox AJ, Ellis DJ, Flatbush MR, Gormley NA, Humphray SJ, Irving LJ, Karbelashvili MS, Kirk SM, Li H, Liu X, Maisinger KS, Murray LJ, Obradovic B, Ost T, Parkinson ML, Pratt MR, Rasolonjatovo IM, Reed MT, Rigatti R, Rodighiero C, Ross MT, Sabot A, Sankar SV, Scally A, Schroth GP, Smith ME, Smith VP, Spiridou A, Torrance PE, Tzonev SS, Vermaas EH, Walter K, Wu X, Zhang L, Alam MD, Anastasi C, Aniebo IC, Bailey DM, Bancarz IR, Banerjee S, Barbour SG, Baybayan PA, Benoit VA, Benson KF, Bevis C, Black PJ, Boodhun A, Brennan JS, Bridgham JA, Brown RC, Brown AA, Buermann DH, Bundu AA, Burrows JC, Carter NP, Castillo N, Chiara E Catenazzi M, Chang S, Neil Cooley R, Crake NR, Dada OO, Diakoumakos KD, Dominguez-Fernandez B, Earnshaw DJ, Egbujor UC, Elmore DW, Etchin SS, Ewan MR, Fedurco M, Fraser LJ, Fuentes Fajardo KV, Scott Furey W, George D, Gietzen KJ, Goddard CP, Golda GS, Granieri PA, Green DE, Gustafson DL, Hansen NF, Harnish K, Haudenschild CD, Heyer NI, Hims MM, Ho JT, Horgan AM, Hoschler K, Hurwitz S, Ivanov DV, Johnson MQ, James T, Huw Jones TA, Kang GD, Kerelska TH, Kersey AD, Khrebtukova I, Kindwall AP, Kingsbury Z, Kokko-Gonzales PI, Kumar A, Laurent MA, Lawley CT, Lee SE, Lee X, Liao AK, Loch JA, Lok M, Luo S, Mammen RM, Martin JW, McCauley PG, McNitt P, Mehta P, Moon KW, Mullens JW, Newington T, Ning Z, Ling Ng B, Novo SM, O’Neill MJ, Osborne MA, Osnowski A, Ostadan O, Paraschos LL, Pickering L, Pike AC, Pike AC, Chris Pinkard D, Pliskin DP, Podhasky J, Quijano VJ, Raczy C, Rae VH, Rawlings SR, Chiva Rodriguez A, Roe PM, Rogers J, Rogert Bacigalupo MC, Romanov N, Romieu A, Roth RK, Rourke NJ, Ruediger ST, Rusman E, Sanches-Kuiper RM, Schenker MR, Seoane JM, Shaw RJ, Shiver MK, Short SW, Sizto NL, Sluis JP, Smith MA, Ernest Sohna Sohna J, Spence EJ, Stevens K, Sutton N, Szajkowski L, Tregidgo CL, Turcatti G, Vandevondele S, Verhovsky Y, Virk SM, Wakelin S, Walcott GC, Wang J, Worsley GJ, Yan J, Yau L, Zuerlein M, Rogers J, Mullikin JC, Hurles ME, McCooke NJ, West JS, Oaks FL, Lundberg PL, Klenerman D, Durbin R, Smith AJ (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53-59.

  24. Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, Leamon JH, Johnson K, Milgrew MJ, Edwards M, Hoon J, Simons JF, Marran D, Myers JW, Davidson JF, Branting A, Nobile JR, Puc BP, Light D, Clark TA, Huber M, Branciforte JT, Stoner IB, Cawley SE, Lyons M, Fu Y, Homer N, Sedova M, Miao X, Reed B, Sabina J, Feierstein E, Schorn M, Alanjary M, Dimalanta E, Dressman D, Kasinskas R, Sokolsky T, Fidanza JA, Namsaraev E, McKernan KJ, Williams A, Roth GT, Bustillo J (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475:348-352.

  25. Lee CS, Kim SK, Kim M (2009) Ion-sensitive field-effect transistor for biological sensing. Sensors (Basel) 9:7111-71131.

  26. Salipante SJ, Kawashima T, Rosenthal C, Hoogestraat DR, Cummings LA (2014) Performance comparison of Illumina and ion torrent next-generation sequencing platforms for 16S rRNA-based bacterial community profiling. Appl Environ Microbiol 80:7583- 7591.

  27. Travers KJ, Chin CS, Rank DR, Eid JS, Turner SW (2010) A flexible and efficient template format for circular consensus sequencing and SNP detection. Nuc Ac Res 38:e159.

  28. Korlach J, Bibillo A, Wegener J, Peluso P, Pham TT, Park I, Clark S, Otto GA, Turner SW (2008) Long, processive enzymatic DNA synthesis using 100% dye-labeled terminal phosphate-linked nucleotides. Nucleos Nucleot Nucl 27:1072-1083.

  29. Foquet M, Samiee KT, Kong X, Chauduri BP, Lundquist PM, Turner SW, Freudenthal J, Roitman DB (2008) Improved fabrication of zero-mode waveguides for single-molecule detection. J Appl Phys 103:034301.

  30. ENCODE project consortium (2004) The ENCODE (ENCyclopedia Of DNA Elements) project. Science 306:636-640.

  31. Schurch NJ, Schofield P, Gierliński M, Cole C, Sherstnev A, Singh V, Wrobel N, Gharbi K, Simpson GG, Owen-Hughes T, Blaxter M, Barton GJ (2016) How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? RNA 22:839-851.

  32. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18:1509-1517.

  33. Hart SN, Therneau TM, Zhang Y, Poland GA, Kocher JP (2013) Calculating sample size estimates for RNA sequencing data. J Comput Biol 20:970-978.

  34. Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP (2014) Sequencing depth and coverage: key considerations in genomic analysis. Nat. Rev. Genet. 15:121-132.

  35. Risso D, Ngai J, Speed TP, Dudoit S (2014) Normalization of RNA-seq data using factor analysis of control genes or samples. Nat Biotechnol 32:896-902.

  36. Jiang L, Schlesinger F, Davis CA, Zhang Y, Li R, Salit M, Gingeras TR, Oliver B (2011) Synthetic spike-in standards for RNA-seq experiments. Genome Res 21:1543-1551.

  37. Munro SA, Lund SP, Pine PS, Binder H, Clevert DA (2014) Assessing technical performance in differential gene expression experiments with external spike-in RNA control ratio mixtures. Nat Commun 5:5125.

  38. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/ projects/fastqc/

  39. Bolger AM, Lohse M, y Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114-2120.

  40. Hannon Lab. Cold Spring Harbor Laboratory. http://hannonlab.cshl.edu/fastx_toolkit/

  41. Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30:614-620.

  42. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnol 29:644-652.

  43. Pruitt KD, Tatusova T, Brown GR, Maglott DR (2012) NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nuc Ac Res 40:D130-D135.

  44. TransDecoder ht tps : / /gi thub. com/ TransDecoder

  45. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674-3676.

  46. Zdobnov EM, y Apwei ler R (2001) InterProScan-- an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17:847-848.

  47. Musacchia F, Basu S, Petrosino G, Salvemini M, Sanges R (2015) Annocript: a flexible pipeline for the annotation of transcriptomes able to identify putative long noncoding RNAs. Bioinformatics 31:2199-2201.

  48. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nuc Ac Res 35:W182 - W185.

  49. Meunier J, Lemoine F, Soumillon M, Liechti A, Weier M, Guschanski K, Hu H, Khaitovich P, Kaessmann H (2013) Birth and expression evolution of mammalian microRNA genes. Genome Res 23:34-45.

  50. Johnsson P, Lipovich L, Grandér D, Morris KV (2014) Evolutionary conservation of long noncoding RNAs; sequence, structure, function. Biochim Biophys Acta 184:1063-1071.

  51. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinformatics. 12:323.

  52. Engström PG, Steijger T, Sipos B, Grant GR, Kahles A, Rätsch G, Goldman N, Hubbard TJ, Harrow J, Guigó R, Bertone P; RGASP Consortium. (2013) Systematic evaluation of spliced alignment programs for RNA-seq data. Nat Meth 10:1185-1191.

  53. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139-140.

  54. Love MI, Huber W, Anders S (2014) Moderate estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550.

  55. Tarazona S, García-Alcalde F, Dopazo J, Ferrer A, Conesa A (2011) Differential expression in RNA-seq: a matter of depth. Genome Res 21:2213-2223.

  56. Koenig D, Jiménez-Gómez JM, Kimura S, Fulop D, Chitwood DH, Headland LR, Kumar R, Covington MF, Devisetty UK, Tat AV, Tohge T, Bolger A, Schneeberger K, Ossowski S, Lanz C, Xiong G, Taylor-Teeples M, Brady SM, Pauly M, Weigel D, Usadel B, Fernie AR, Peng J, Sinha NR, Maloof JN (2013) Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. Proc Nat Acad Sci USA, 110:E2655-E2662.

  57. Jiao Y, Leebens-Mack J, Ayyampalayam S, Bowers JE, McKain MR, McNeal J, Rolf M, Ruzicka DR, Wafula E, Wickett NJ, Wu X, Zhang Y, Wang J, Zhang Y, Carpenter EJ, Deyholos MK, Kutchan TM, Chanderbali AS, Soltis PS, Stevenson DW, McCombie R, Pires JC, Wong GK, Soltis DE, Depamphilis CW (2012) A genome triplication associated with early diversification of the core eudicots. Genome Biol 13:R3.

  58. Yang Y, Moore M. J, Brockington SF, Soltis DE, Wong GK, Carpenter EJ, Zhang Y, Chen L, Yan Z, Xie Y, Xie Y, Sage RF, Covshoff S, Hibberd JM, Nelson MN, Smith SA (2016) Dissecting molecular evolution in the highly diverse plant clade Caryophyllales using transcriptome sequencing. Mol Biol Evol 32:2001-2014.

  59. Bythell-Douglas R, Rothfels CJ, Stevenson DWD, Graham SW, Wong GK, Nelson DC, Bennett T (2017) Evolution of strigolactone receptors by gradual neo-functionalization of KAI2 paralogues. BMC Biol. 15:52.

  60. Bourque S, Jeandroz S, Grandperret V, Lehotai N, Aimé S, Soltis DE, Miles NW, Melkonian M, Deyholos MK, Leebens-Mack JH, Chase MW, Rothfels CJ, Stevenson DW, Graham SW, Wang X, Wu S, Pires JC, Edger PP, Yan Z, Xie Y, Carpenter EJ, Wong GKS, Wendehenne D, Nicolas-Francès V (2016) The Evolution of HD2 proteins in green plants. Trends Plant Sci. 21:1008-1016.

  61. Sayou C, Monniaux M, Nanao MH, Moyroud E, Brockington SF, Thévenon E, Chahtane H, Warthmann N, Melkonian M, Zhang Y, Wong GK, Weigel D, Parcy F, Dumas R (2014) A promiscuous intermediate underlies the evolution of LEAFY DNA binding specificity. Science 343:645-648.

  62. Chun-Fang L, Yan Z, Yao Y, Qiong-Yi Z, Sheng- Jun W, Xin-Chao W, Ming-Zhe Y, Da L, Xuan L (2015) Global transcriptome and gene regulation network for secondary metabolite biosynthesis of tea plant (Camellia sinensis) BMC Genomics 16:560.

  63. Ibarra-Laclette E, Zamudio-Hernández F, Pérez-Torres CA, Albert VA, Ramírez-Chávez E, Molina-Torres J, Fernández-Cortes A, Calderón- Vázquez C, Olivares-Romero JL, Herrera- Estrella A, Herrera-Estrella L (2015) De novo sequencing and analysis of Lophophora williamsii transcriptome, and searching for putative genes involved in mescaline biosynthesis. BMC Genomics 16:657.

  64. Der JP, Barker MS, Wickett NJ, Depamphilis CW, Wolf PG (2011) De novo characterization of the gametophyte transcriptome in bracken fern, Pteridium aquilinum. BMC Genomics 12:99.

  65. Nagano AJ, Honjo MN, Mihara M, Sato M, Kudoh H (2015) Detection of plant viruses in natural environments by using RNA-Seq. Methods Mol Biol 1236:89-98.

  66. Rodríguez-Alonso G, Matvienko M, López- Valle ML, Lázaro-Mixteco PE, Napsucialy- Mendivil S, Dubrovsky JG, Shishkova S (2018) Transcriptomics insights into the genetic regulation of root apical meristem exhaustion and determinate primary root growth in Pachycereus pringlei (Cactaceae). Sci Rep 8:8529.

  67. Lieben L (2017) Plant genetics: Spatial transcriptomics in plants. Nat Rev Genet 18:394.

  68. Tang F, Lao K, Surani MA (2011) Development and applications of single-cell transcriptome analysis. Nat Methods 8:S6-S11.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Educ Bioquimica. 2018;37

ARTíCULOS SIMILARES

CARGANDO ...