medigraphic.com
ENGLISH

Annals of Hepatology

Órgano Oficial de la Asociación Mexicana de Hepatología
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2019, Número 1

<< Anterior Siguiente >>

Ann Hepatol 2019; 18 (1)


miR-182-5p Attenuates High-Fat -Diet-Induced Nonalcoholic Steatohepatitis in Mice

Liang Q, Chen H, Xu X, Jiang W
Texto completo Cómo citar este artículo

Idioma: Ingles.
Referencias bibliográficas: 26
Paginas: 116-125
Archivo PDF: 703.17 Kb.


PALABRAS CLAVE

Sin palabras Clave

RESUMEN

Sin resumen.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Rinella ME. Nonalcoholic fatty liver disease: a systematic review. JAMA 2015; 313: 2263-73.

  2. Targher G, Chonchol MB, Byrne CD. CKD and nonalcoholic fatty liver disease. Am J Kidney Dis 2014; 64: 638-52.

  3. Granér M, Nyman K, Siren R, Pentikäinen MO, Lundbom J, Hakkarainen A, Lauerma K, et al. Ectopic fat depots and left ventricular function in non-diabetic men with nonalcoholic fatty liver disease. Circ Cardiovasc Imaging 2015; 8: e001979.

  4. Day CP, James OF. Steatohepatitis: a tale of two “hits”? Gastroenterology 1998; 114: 842-5.

  5. Day CP. From fat to inflammation. Gastroenterology 2006; 130: 207-10.

  6. Rivera CA, Adegboyega P, van Rooijen N, Tagalicud A, Allman M, Wallace M. Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis. J Hepatol 2007; 47: 571-9.

  7. Spruss A, Kanuri G, Wagnerberger S, Haub S, Bischoff SC, Bergheim I. Toll-Like Receptor 4 Is Involved in the Development of Fructose-Induced Hepatic Steatosis in Mice. Hepatology 2009; 50: 1094-104.

  8. Li L, Chen L, Hu L, Liu Y, Sun HY, Tang J, Hou YJ, et al. Nuclear Factor High-Mobility Group Box1 Mediating the Activation of Toll-Like Receptor 4 Signaling in Hepatocytes in the Early Stage of Nonalcoholic Fatty Liver Disease in Mice. Hepatology 2011; 54: 1620-30.

  9. Chen W, Wang X, Huang LI, Liu BO. Hepcidin in non-alcoholic fatty liver disease regulated by the TLR4/NF-kB signaling pathway. Exp Ther Med 2016; 11: 73-6.

  10. Takeda K, Akira S. TLR signaling pathways. Semin Immunol 2004; 16: 329.

  11. Seki E, Brenner DA. Toll-like receptors and adaptor molecules in liver disease: update. Hepatology 2008; 48: 322-35.

  12. Akira S, Takeda K. Toll-like receptor signaling. Nat Rev Immunol 2004; 4: 499-511.

  13. Ambros V. The functions of animal microRNAs. Nature 2004; 431: 350-5.

  14. Jiang W, Kong L, Ni Q, Lu Y, Ding W, Liu G, Pu L, et al. miR- 146a ameliorates liver ischemia/reperfusion injury by suppressing IRAK1 and TRAF6. PLoS One 2014; 9: e101530.

  15. Jiang W, Ni Q, Tan L, Kong L, Lu Y, Xu X, Kong L. The microRNA- 146a/b attenuates acute small-for-size liver graft injury in rats. Liver Int 2015; 35: 914-24.

  16. Jiang W, Hu M, Rao J, Xu X, Wang X, Kong L. Over-expression of Toll-like receptors and their ligands in small-for-size graft. Hepatol Res 2010; 40: 318-29.

  17. Jiang W, Liu J, Dai Y, Zhou N, Ji C, Li X. MiR-146b attenuates high-fat diet-induced non-alcoholic steatohepatitis in mice. J Gastroenterol Hepatol 2015; 30: 933-43.

  18. Jiang W, Liu G, Tang W. MicroRNA-182-5p Ameliorates Liver Ischemia-Reperfusion Injury by Suppressing Toll-Like Receptor 4. Transplant Proc 2016; 48: 2809-14.

  19. Qin SB, Peng DY, Shi Y, Ke ZP. MiR-182-5p Inhibited Oxidative Stress and Apoptosis Triggered by Oxidized Low-Density Lipoprotein via Targeting Toll-Like Receptor 4. J Cell Physiol 2017 [Epub ahead of print].

  20. Xu S,Witmer PD, Lumayag S, Kovacs B, Valle D. MicroRNA (miRNA) transcriptome of mouse retina and identification of a sensory organ-specific miRNA cluster. J Biol Chem 2007; 282: 25053-66.

  21. Li H, Kloosterman W, Fekete DM. MicroRNA-183 family members regulate sensorineural fates in the inner ear. J Neurosci 2010; 30: 3254-63.

  22. Guttilla IK,White BA. Coordinate regulation of FOXO1 by miR- 27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem 2009; 284: 23204-16.

  23. Chiang CH, Hou MF, HungWC. Up-regulation of miR-182 by âcatenin in breast cancer increases tumorigenicity andinvasiveness by targeting the matrix metalloproteinase inhibitor RECK. Biochim Biophys Acta 2013; 1830: 3067-76.

  24. Rasheed SA, Teo CR, Beillard EJ, Voorhoeve PM, Casey PJ. MicroRNA-182 and microRNA-200a control G-protein subunit alpha-13 (GNA13) expression and cell invasion synergistically in prostate cancer cells. J Biol Chem 2013; 288: 7986-95.

  25. Li Y, Chen S, Shan Z, Bi L, Yu S, Li Y, Xu S. miR-182-5p improves the viability, mitosis, migration, and invasion ability of human gastric cancer cells by down-regulating RAB27A. Biosci Rep 2017; 37: pii: BSR20170136.

  26. Zhou X, Zhang C, Zhang C, Peng Y, Wang Y, Xu H. MicroRNA- 182-5p Regulates Nerve Injury-induced Nociceptive Hypersensitivity by Targeting Ephrin Type-b Receptor 1. Anesthesiology 2017; 126: 967-77.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Ann Hepatol. 2019;18

ARTíCULOS SIMILARES

CARGANDO ...