medigraphic.com
ENGLISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Digital)
ISSN 1405-888X (Impreso)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2018, Número S2

<< Anterior

TIP Rev Esp Cienc Quim Biol 2018; 21 (S2)


Domesticación, diversidad y recursos genéticos y genómicos de México: El caso de las calabazas

Eguiarte LE, Hernández-Rosales HS, Barrera-Redondo J, Castellanos-Morales G, Paredes-Torres LM, Sánchez-de la Vega G, Ruiz-Mondragón KY, Vázquez-Lobo A, Montes-Hernández S, Aguirre-Planter E, Souza V, Lira R
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 230
Paginas: 85-101
Archivo PDF: 1790.66 Kb.


PALABRAS CLAVE

Cloroplasto, Cucurbita, filogenia, genética de poblaciones, genómica.

RESUMEN

La domesticación de plantas y animales permite estudiar diferentes procesos evolutivos, como la selección, adaptación y especiación. En este artículo se describen avances recientes en el estudio de las calabazas, las cuales constituyen el género Cucurbita (Cucurbitaceae) siendo un grupo de plantas herbáceas americanas que incluyen entre 12 y 15 especies. Cucurbita ha tenido seis eventos de domesticación, de los cuales cuatro sucedieron en México. Este es un género relativamente reciente, que surgió en Norte América hace 16 millones de años y sus especies cultivadas mantienen una alta variación genética; Cucurbita pepo es la especie que presenta mayor variación genética,variación asociada a dos domesticaciones independientes, una en el norte de México, y otra en el Sureste de los Estados Unidos. En otra especie, Cucurbita argyrosperma, sus poblaciones de la Península de Yucatán, representan una poza genética diferenciada del resto de la especie. El estudio del genoma de C. argyrosperma y taxa cercanos ha revelado las regiones de su genoma asociadas a la domesticación. Las poblaciones de las especies de este género representan una fuente de importantes recursos genéticos frente al cambio climático y constituyen un buen sistema para el estudio de la domesticación y de diferentes procesos evolutivos.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Aguirre-Liguori, J. A. (2017) Genómica de poblaciones del maíz silvestre, el teocintle (Zea mays ssp. parviglumis y Zea mays ssp. mexicana) (Tesis de Doctorado). Instituto de Ecología, Universidad Nacional Aútonoma de México, México, 136 págs.

  2. Aguirre-Liguori, J. A., Aguirre-Planter, E. & Eguiarte, L. E. (2016). Genetics and ecology of wild and cultivated maize: domestication and introgression. In: Lira, R., Casas, A. & Blancas, J. (Eds.). Ethnobotany of Mexico: Interactions of People and Plants in Mesoamerica (pp. 403-416). New York: Springer. https://doi. org/10.1007/978-1-4614-6669-7_16

  3. Aguirre-Liguori, J. A., Tenaillon, M. I., Vázquez-Lobo, A., Gaut, B. S., Jaramillo-Correa, J. P., Montes-Hernández, S., Souza, V. & Eguiarte, L. E. (2017). Connecting genomic patterns of local adaptation and niche suitability in teosintes. Molecular Ecology, 26(16), 4226-4240. https://doi.org/10.1111/mec.14203

  4. Aguirre-Liguori, J. A., Gaut, B. S., Jaramillo-Correa, J. P., Tenaillon, M. I., Montes-Hernández S., García-Oliva F., Hearne, S. & Eguiarte L. E. (2018). Divergence with gene flow is driven by local adaptation to temperature and soil phosphorus concentration in teosinte subspecies (Zea mays parviglumis and Zea mays mexicana). In prep.

  5. Aguirre-Liguori, J. A., Ramírez-Barahona, S., Tiffin, P. & Eguiarte, L. E. (2018). Future climate change predicts population extinction by disrupting local adaptation in wild relatives of maize. In prep.

  6. Aguirre Muñoz, A., Golubov, J. & Mandujan, M.C. (2015). Batallas biológicas en las islas de México ¿estamos ganando la guerra? Oikos, 13, 6-10. http://web.ecologia.unam.mx/oikos3.0/index. php/todos-los-numeros/articulos-anteriores/124-batallasbiologicas- en-las-islas-de-mexico-estamos-ganando-la-guerra

  7. Allem, A.C. (2000) The terms genetic resource, biological resource, and biodiversity examined. Environmentalist, 20, 335-341. https:// doi.org/10.1023/A:1006730000698

  8. Altieri, M. A. (1995) Agroecology: The science of sustainable agriculture. 2nd Edition, Boulder,CO, Westview Press.

  9. Álvarez-Yépiz, & Martínez-Yrízar (2015). Huracanes, sequías y heladas: eventos climáticos extremos en México. Oikos, 15, 6-11. http://web.ecologia.unam.mx/oikos3.0/index.php/todos-losnumeros/ articulos-anteriores/165-eventos-climaticos-extremosen- ecosistemas

  10. Barboza, N., Albertazz, F.J., Sibaja-Cordero, J.A., Mora-Umaña, F., Astorga, C. & Ramírez, P. (2012). Analysis of genetic diversity of Cucurbita moschata (D.) germplasm accessions from Mesoamerica revealed by PCR SSCP and chloroplast sequence data. Scientia horticulturae, 134, 60-71. https://doi.org/10.1016/j. scienta.2011.10.02

  11. Beja-Pereira, A., Luikart, G., Englan, P.R., Bradley, D.G., Jann, O.C., Bertorell, G., Chamberlain, A.T., Nunes, T.P., Metodiev, S., Ferrand, N. & Erhardt, G. (2003). Geneculture coevolution between cattle milk protein genes and human lactase genes. Nature Genetics, 35(4), 311-313. https://doi.org/10.1038/ng1263

  12. Bennett, M. D., & Smith, J. B. (1976). Nuclear DNA Amounts in Angiosperms. Philosophical Transactions of the Royal Society B: Biological Sciences, 274(933), 227–274. https://doi.org/10.1098/ rstb.1976.0044

  13. Bennetzen, J., Buckler, E., Chandler, V., Doebley, J., Dorweiler, J., Gaut, B., Freeling, M., Hake, S., Kellogg, E., Poethig, R.S. & Walbot, V. (2001). Genetic evidence and the origin of maize. Latin American Antiquity, 12(1), 84-86. http://www.jstor.org/stable/971759

  14. Blanca, J., Cañizares, J., Roig, C., Ziarsolo, P., Nuez, F. & Picó, B., (2011). Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMC Genomics, 12(1), 104-118. https://doi.org/10.1186/1471-2164- 12-104

  15. Bisognin, D. A. (2002). Origin and evolution of cultivated cucurbits. Ciência Rural, 32(4), 715–723. https://doi.org/10.1590/S0103- 84782002000400028

  16. Castellanos-Morales, G., Paredes, L., Gámez N., Hernández-Rosales, H. S., Sánchez de la Vega, G., Barrera-Redondo, J., Aguirre-Planter, E., Vázquez-Lobo, A., Montes-Hernández, S., Lira-Saade, R. & Eguiarte, L. E. (2018).Historical biogeography and phylogeny of Cucurbita: insights from ancestral area reconstruction and niche evolution. Molecular phylogenetics and evolution, 128, 38-54 https://doi.org/10.1016/j.ympev.2018.07.016

  17. CONABIO (2006). Capital natural y bienestar social. México, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad.

  18. Darwin, C. (1859). On the origin of species by means of natural selection. 1859. London, Murray.

  19. De Candolle, A. (1883). Origine des plantes cultivées (Vol. 43). G. Baillière et cie. https://books.google.com.mx/books?hl=en&lr= &id=vO8HAAAAIAAJ&oi=fnd&pg=PA1&dq=de+Candolle& ots=YOU02O4wkv&sig=jqJOqA1m1moQKUl9NxexYG517v Q#v=onepage&q=de%20Candolle&f=false

  20. Dirzo R., Young, H.S., Galetti, M., Ceballos, G., Isaac, N.J. & Collen, B. (2014). Defaunation in the Anthropocene. Science, 345(6195), 401-406. https://www.researchgate.net/profile/Mauro Galetti/ publication/264247848 Defaunation in the Anthropocene/links/53f 911111c1a0cf27c365cea9088/Defaunation-in-the-Anthropocene. pdf

  21. Eguiarte, L.E. (1986). Una guía para principiantes a la genética de poblaciones. Ciencias, Número especial 1, 30-39. File:///Users/ luis/Downloads/10896-10641-0-PB.pdf

  22. Eguiarte, L. E., Aguirre-Liguori, J. A., Jardón-Barbolla, L., Aguirre- Planter, E. & Souza, V. (2013). Genómica de poblaciones: nada en Evolución va a tener sentido si no es a la luz de la genómica, y nada en genómica tendrá sentido si no es a la luz de la evolución. TIP. Revista especializada en ciencias químicobiológicas, 16(1), 42-56. http://www.scielo.org.mx/scielo. php?script=sci_arttext&pid=S1405-888X2013000100005&lng =es&nrm=iso

  23. Eguiarte, L.E., Equihua Zamora, C. & Espinosa-Asuar, L. (2017). La milpa es un espejo de la diversidad biológica y cultural de México. Oikos, 17, 7-9 http://web.ecologia.unam.mx/oikos3.0/ index.php/todos-los-numeros/articulos-anteriores/210-milpaespejo- de-la-diversidad

  24. Escalante, A.E., Jardón-Barbolla, L., Ramírez-Barahona, S. & Eguiarte, L.E. (2014). The study of biodiversity in the era of massive sequencing. Revista Mexicana de Biodiversidad, 85, 1249-1264. https://doi.org/10.7550/rmb.43498

  25. Esteras, C., Gómez, P., Monforte, A. J., Blanca, J., Vicente-Dolera, N., Roig, C., Nuez, F. & Pico, B. (2012). High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping. BMC Genomics, 13(1), 80. https:// doi.org/10.1186/1471-2164-13-80

  26. FAO (2011). Segundo plan de acción mundial para los recursos fitogenéticos para la alimentación y la agricultura. Comisión de recursos genéticos para la alimentación y la agricultura. Roma, Italia.

  27. Francis, R.C. (2015). Domesticated: evolution in a man-made world. W.E. Norton, New York, USA.

  28. Fustier, M.A., Bandenburg, J.T., Boitard, S., Lapeyronnie, J., Eguiarte, L. E., Vigouroux, Y., Manicacci, D. & Tenaillon, M. I. (2017) Signatures of local adaptation in lowland and highland teosintes from whole-genome sequencing of pooled samples. Molecular Ecology, 26(10), 2738-2756. https://doi.org/10.1111/mec.14082

  29. Gaut, B.S. (2015). Evolution is an experiment: assessing parallelism in crop domestication and experimental evolution: (Nei Lecture, SMBE 2014, Puerto Rico). Molecular Biology and Evolution, 32(7), 1661-1671. https://doi.org/10.1093/molbev/ msv105

  30. Gaut, B.S., Díez, C.M. & Morrell, P.L. (2015). Genomics and the contrasting dynamics of annual and perennial domestication. Trends in Genetics, 31(12), 709-719. https://doi. org/10.1016/j.tig.2015.10.002

  31. Gepts, P. (2014). The contribution of genetic and genomic approaches to plant domestication studies. Current Opinion in Plant Biology, 18(1), 51–59. https://doi.org/10.1016/j.pbi.2014.02.001

  32. Gerbault, P., Liebert, A., Itan, Y., Powell, A., Currat, M., Burger, J., Swallow, D.M. & Thomas, M.G. (2011). Evolution of lactase persistence: an example of human niche construction. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1566), 863-877. https://doi.org/10.1098/ rstb.2010.0268

  33. Gliessmann, S. R. (1983). Allelopathic interactions in crop-weed mixtures: applications for weed management. Journal Chemical Ecology, 9, 991. https://doi.org/10.1007/BF00982206

  34. Gliessmann, S. R. (1990) The ecology and management of traditional farming systems. In: M.A. Altieri and S. B. Hecht (eds.). Agroecology, and Small Farm Development. BocaRaton, Florida, CRC Press,

  35. Gong, L., Stift, G., Kofler, R., Pachner, M. & Lelley, T. (2008). Microsatellites for the genus Cucurbita and an SSR-based genetic linkage map of Cucurbita pepo L. Theoretical and Applied Genetics, 117(1), 37–48. https://doi.org/10.1007/s00122-008- 0750-2

  36. Guerra-García, A., Suárez-Antillano, M., Mastretta-Yanes, A., Delgado- Salinas, A. & Piñero, D. (2017). Domestication genomics of the open-pollinated scarlet runner bean (Phaseoulus coccineus L.). Frontiers in Plant Science, 8, 1891. http://doi.org/10.3389/ fpls.2017.01891

  37. Gustafson, P., Gong, L., Pachner, M., Kalai, K. & Lelley, T. (2008). SSR-based genetic linkage map of Cucurbita moschata and its synteny with Cucurbita pepo. Genome, 51(11), 878–887. https:// doi.org/10.1139/G08-072

  38. Hancock, J. F. (2005). Contributions of domesticated plant studies to our understanding of plant evolution. Annals of Botany, 96(6), 953–963. https://doi.org/10.1093/aob/mci259

  39. Hufford, M.B., Xu, X., van Heerwaarden, J., Pyhäjärvi, T., Chia, J.-M., Cartwright, R. A., Elshire, R. J., Glaubitz, J. C., Guill, K. E., Kaeppler, S. M., Lai, J., Morrell, P. L., Shannon, L. M., Song, C., Springer, N. M., Swanson-Wagner, R. A., Tiffin, P., Wang, J., Zhang, G., Doebley, J., McMullen, M. D., Ware, D., Buckler, E. S., Yang, S. & Ross-Ibarra, J. (2012a). Comparative population genomics of maize domestication and improvement. Nature Genetics, 44(7), 808–811. https://doi.org/10.1038/ng.2309

  40. Hufford, M.B., Martínez-Meyer, E., Gaut, B.S., Eguiarte, L.E. & Tenaillon, M.I. (2012b). Inferences from the historical distribution of wild and domesticated maize provide ecological and evolutionary insight. PLoS One, 7(11), 47659. https//doi. org/10.1371/journal.pone.0047659

  41. Hurd, P. D., Linsley, E. G. & Whitaker, T. W. (1971). Squash and gourd bees (Peponapis, Xenoglossa) and the origin of the cultivated Cucurbita. Evolution, 25, 218–234. https://doi. org/10.1111/j.1558-5646.1971.tb01874.x

  42. Ingram, C.J.E., Mulcare, C.A., Itan, Y., Thomas, M.G. & Swallow, D.M. (2009). Lactose digestion and the evolutionary genetics of lactase persistence. Human Genetics, 124(6), 579–591. https:// doi.org/10.1007/s00439-008-0593-6

  43. Jardón-Barbolla, L. (2015). Orígenes y diversidad a la mitad de las montañas: Nikolai Vavílov, México y las plantas domesticadas. Oikos, 14, 6-10. http://web.ecologia.unam.mx/oikos3.0/index. php/oikos-historico/numeros-anteriores/141-origenes-ydiversidad- a-la-mitad-de-las-montanas-nikolai-vavilov-mexicoy- las-plantas-domesticadas.

  44. Jiao, Y., Zhao, H., Ren, L., Song, W., Zeng, B., Guo, J., Wang, B., Liu, Z., Chen, J., Li, W., Zhang, M., Xie, S. & Lai, J. (2012). Genome-wide genetic changes during modern breeding of maize. Nature Genetics, 44(7), 812–815. https: //doi.org/10.1038/ng.2312Kates, H.R., Soltis, P.S. & Soltis, D.E. (2017). Evolutionary and domestication history of Cucurbita (pumpkin and squash) species inferred from 44 nuclear loci. Molecular Phylogenetics and Evolution, 111, 98–109. https://doi.org/10.1016/j.ympev.2017.03.002

  45. Kato, T.A., Mapes, C., Mera, L.M., Serratos, J.A. & Bye, R.A. (2009). Origen y diversificación del maíz: una revisión analítica. México, D.F.: Universidad Nacional Autónoma de México, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad.

  46. Kistler, L., Newsom, L. A., Ryan, T. M., Clarke, A. C., Smith, B. D. & Perry, G. H. (2015). Gourds and squashes (Cucurbita spp.) adapted to megafaunal extinction and ecological anachronism through domestication. Proceedings of the National Academy of Sciences, 112(49), 15107-15112. https://doi.org/10.1073/pnas.1516109112

  47. Koenig, D., Jimenez-Gomez, J. M., Kimura, S., Fulop, D., Chitwood, D. H., Headland, L. R., Kumar, R., Covington, M. F., Devisetty, U. K., Tat, A. V., Tohge, T., Bolger, A., Schneeberger, K., Ossowski, S., Lanz, C., Xiong, G., Taylor-Teeples, M., Brady, S. M., Pauly, M., Weigel, D., Usadel, B., Fernie, A. R., Peng, J., Sinha, N. R. & Maloof, J. N. (2013). Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. Proceedings of the National Academy of Sciences, 110(28), E2655–E2662. https:// doi.org/10.1073/pnas.1309606110

  48. Laland, K.N., Odling-Smee, J. & Myles, S. (2010). How culture shaped the human genome: bringing genetics and the human sciences together. Nature Reviews Genetics, 11(2), 137-148. http://doi:10.1038/nrg2734

  49. Lam, H.-M., Xu, X., Liu, X., Chen, W., Yang, G., Wong, F.-L., Li, M-W., He, W., Qin, N., Wang, B., Li, J., Jian, M., Wang, J., Shao, G., Wang, J., Sun, S. S-M. & Zhang, G. (2010). Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nature Genetics, 42(12), 1053–1059.

  50. Li, J., Jian, M., Wang, J., Shao, G., Wang, J., Sun, S. S-M. & Zhang, G. (2010). Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nature Genetics, 42(12), 1053–1059.

  51. Li, Y., Zhao, S., Ma, J., Li, D., Yan, L., Li, J., Qi, X., Guo, X., Zhang, L., He, W., Chang, R., Liang, Q., Guo, Y., Ye, C., Wang, X., Tao, Y., Guan, R., Wang, J., Liu, Y., Jin, L., Zhang, X., Liu, Z., Zhang, L., Chen, J., Wang, K., Nielsen, R., Li, R., Chen, P., Li, W., Reif, J. C., Purugganan, M., Wang, J., Zhang, M., Wang, J. & Qiu, L-J. (2013). Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing. BMC Genomics, 14(1), 579. https://doi.org/10.1186/1471-2164-14-579

  52. Lin, T., Zhu, G., Zhang, J., Xu, X., Yu, Q., Zheng, Z., Zhang, Z., Lun, Y., Li, S., Wang, X., Huang, Z., Li, J., Zhang, C., Wang, T., Zhang, Y., Wang, A., Zhang, Y., Lin, K., Li, C., Xiong, G., Xue, Y., Mazzucato, A., Causse, M., Fei, Z., Giovannoni, J. J., Chetelat, R. T., Zamir, D., Städler, T., Li, J., Ye, Z., Du, Y. & Huang, S. (2014). Genomic analyses provide insights into the history of tomato breeding. Nature Genetics, 46(11), 1220–1226. https:// doi.org/10.1038/ng.3117

  53. Lira-Saade, R. (1995). Estudios taxonómicos y ecogeográficos de las Cucurbitaceae latinoamericanas de importancia económica. Systematic and ecogeographic studies on crop genepools. 9. International Plant Genetic Resources Institute, Rome.

  54. Lira, R., Andres, T.C. & Monro, A.K. (2009a). Cucurbita L. In Davids, G., Sousa, M.S., Knapp, S. & Chiang, F. (eds.). Flora Mesoamericana Vol. 4 (pp. 9-13). Cucurbitaceae a Polemoniaceae. Missouri: Botanical Garden Press.

  55. Lira, R., Eguiarte, L. E. & Montes-Hernández, S. (2009b). Proyecto Recopilación y análisis de la información existente de las especies de los géneros Cucurbita y Sechium que crecen y / o se cultivan en México. México, D.F.: CONABIO, 107p.

  56. Lira, R., Eguiarte, L., Montes, S., Zizumbo-Villarreal, D., Marín, P.C.G. & Quesada, M. (2016). Homo sapiens–Cucurbita interaction in Mesoamerica: Domestication, Dissemination, and Diversification. In Lira, R., Casas, A. & Blancas, J. (eds.). Ethnobotany of Mexico (pp. 389-401). Ethnobiology. New York: Springer. https://doi. org/10.1007/978-1-4614-6669-7_15

  57. Lozada-Aranda, M., Rojas Barrera, I., Mastretta Yanes, A., Ponce- Mendoza, A., Burgeff, C., Orjuela-R, M. A. & Oliveros, O. (2017). Las milpas de México. Oikos, 17, 10-12. http://goo.gl/fsFQxq

  58. Mangelsdorf, P.C. (1974). Corn. Its origin, evolution and improvement. Cambridge, Massachusetts: Belknap Press of Harvard University Press.

  59. Medina, F.M. & Nogales, M. (2009). A review on the impacts of feral cats (Felis silvestris catus) in the Canary Islands: implications for the conservation of its endangered fauna. Biodiversity and Conservation, 18(4), 829-846. https://doi.org/10.1007/s10531- 008-9503-4

  60. Meyer, R. S. & Purugganan, M. D. (2013). Evolution of crop species: genetics of domestication and diversification. Nature Reviews. Genetics, 14, 840–852. https://doi.org/10.1038/nrg3605

  61. Montero-Pau, J., Blanca, J., Bombarely, A., Ziarsolo, P., Esteras, C., Martí-Gómez, C., Ferriol, M., Gómez, P., Jamilena, M., Mueller, L., Picó, B. & Cañizares, J. (2017). De novo assembly of the zucchini genome reveals a whole genome duplication associated with the origin of the Cucurbita genus. Plant Biotechnology J., 12(10), 3218–3221. https://doi.org/10.1111/pbi.12860

  62. Montes- Hernández, S. (2002). Flujo génico en calabaza (Cucurbita spp.) dentro del sistema milpa en la parte central de México (Tesis de Doctorado). Facultad de Ciencias, Universidad Nacional Autónoma de México, México. 107 págs.

  63. Montes-Hernández, S. & Eguiarte, L. E. (2002). Genetic structure and indirect estimates of gene flow in three taxa of Cucurbita (Cucurbitaceae) in western Mexico. Am. J. Bot., 89, 1156- 1163. https://doi.org/10.3732/ajb.89.7.1156

  64. Montes-Hernández, S., Merrick, L.C. & Eguiarte, L.E. (2005) Maintenance of squash (Cucurbita spp.) landrace diversity by farmers’ activities in Mexico. Genetic Resource and Crop Evolution, 52(6), 697-707. http://doi.org/10.1017/s10722-003- 6018-4

  65. Moreno-Letelier, A., Liguori, J.A., Tenaillon, M.I., Piñero, D., Gaut, B.S., Lobo, A.V. & Eguiarte, L.E. (2018). Was maize domesticated in the Balsas Basin? Complex patterns of genetic divergence, gene flow and ancestral introgressions among Zea subspecies suggest an alternative scenario. bioRxiv, p. 239707. DOI: https:// doi.org/10.1101/239707

  66. Nee, M. (1990). The domestication of Cucurbita (Cucurbitaceae). Economic Botany, 44(Suppl 3), 56–68. https://doi.org/10.1007/ BF02860475

  67. Ott, A., Liu, S., Schnable, J.C., Yeh, C.T., Wang, K.S. & Schnable, P.S. (2017). tGBS® genotyping-by-sequencing enables reliable genotyping of heterozygous loci. Nucleic Acids Research, 45(21), e178. https://doi.org/10.1093/nar/gkx853

  68. Paredes Torres, L. M. (2016). Filogenia molecular del género Cucurbita L. (Cucurbitaceae) usando secuencias de cloroplasto (Tesis de Licenciatura). FES Iztacala, Universidad Nacional Autónoma de México. México. 96 págs. 165(3), 663–669. https://doi.org/10.1126/science.1259215

  69. Solbrig, O.T., & Sobrig, D.J. (1994). So shall you reap: Farming and crops in human affairs. Island Press, Washington, D.C., USA.

  70. Sun, H., Wu, S., Zhang, G., Jiao, C., Guo, S., Ren, Y., Zhang, J.,Zhang, H., Gong, G., Jia, Z., Zhang, F., Tian, J., Lucas, W. J., Doyle, J. J., Li, H., Fei, Z. & Xu, Y. (2017). Karyotype Stability and Unbiased Fractionation in the Paleo-Allotetraploid Cucurbita Genomes. Molecular Plant, 10(10), 1293–1306. https://doi.org/10.1016/j. molp.2017.09.003

  71. Villanueva, C. V. (2007). Calabazas cultivadas. Identificación de especies, caracterización y descripción varietal. Chapingo, Estado de México: Universidad Autónoma Chapingo.

  72. Weiling, F. (1959). Genomanalytische Untersuchungen bei Kürbis (Cucurbita L.). Der Züchter, 29(4), 161–179.

  73. Wilson, H. (1990). Gene Flow in Squash Species. BioScience, 40 (6), 449-455. https://doi.org/10.2307/1311392

  74. Whitaker, T. W. (1933). Cytological and Phylogenetic Studies in the Cucurbitaceae. Botanical Gazette, 94(4), 780–790. https://doi. org/10.1086/334347

  75. Whitaker, T. W. (1981). Archeological cucurbits. Economic Botany, 35(4), 460–466. https://doi.org/10.1007/BF02858596

  76. Whitaker, T.W. & Davis, G.N. (1962). Cucurbits: Botany, Cultivation, and Utilization. NewYork: Interscience. Publishers.

  77. Xu, X., Liu, X., Ge, S., Jensen, J. D., Hu, F., Li, X., Dong, Y., Gutenkunst, R. N., Fang, L., Huang, L., Li, J., He, W., Zhang, G., Zheng, X., Zhang, F., Li, Y., Yu, C., Kristiansen, K., Zhang, X., Wang, J., Wright, M., McCouch, S., Nielsen, R., Wang, J. & Wang, W. (2011). Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nature Biotechnology, 30(1), 105–111. https://doi.org/10.1038/nbt.2050

  78. Zeder, M. A. (2015). Core questions in domestication research. Proceedings of the National Academy of Sciences, 112(11), 3191–3198. https://doi.org/10.1073/pnas.1501711112

  79. Zhang, G., Ren, Y., Sun, H., Guo, S., Zhang, F., Zhang, J., Zhang, H., Jia, Z., Fei, Z., Xu, Y. & Li, H. (2015). A high-density genetic map for anchoring genome sequences and identifying QTLs associated with dwarf vine in pumpkin (Cucurbita maxima Duch.). BMC Genomics, 16(1), 1101. https://doi.org/10.1186/ s12864-015-2312-8

  80. Zheng, Y. H., Alverson, A. J., Wang, Q. F. & Palmer, J. D. (2013). Chloroplast phylogeny of Cucurbita: Evolution of the domesticated and wild species. Journal of Systematics and Evolution, 51(3), 326–334. https://doi.org/10.1111/jse.12006

  81. Zizumbo-Villarreal, D. & Terán, S, (1985). Las semillas de la cultura. Los agrosistemas tradicionales una alternativa de desarrollo. Boletín de la Escuela de Ciencias Antropológicas de la Universidad Autónoma de Yucatán, 72, 3–18.

  82. Zizumbo-Villarreal, D., Colunga-GarcíaMarín, P., May-Pat, F, Martínez-Castillo, J. & Mijangos-Cortés, J.O. (2010). Recursos fito-genéticos para la alimentación y la agricultura. In Durán- García R, Méndez-González M (eds.) Biodiversidad y Desarrollo Humano en Yucatán. Mérida, Yucatán: CICY, PPD-FMAM, CONABIO, SEDUMA.

  83. Zizumbo-Villarreal, D. & Colunga-GarcíaMarín, P. (2010). Origin of agriculture and plant domestication in West Mesoamerica. Genetic Resources and Crop Evolution, 57(6), 813–825. https:// doi.org/10.1007/s10722-009-9521-4

  84. Zraidi, A., Stift, G., Pachner, M., Shojaeiyan, A., Gong, L. & Lelley, T. (2007). A consensus map for Cucurbita pepo. Molecular Breeding, 20(4), 375–388. https://doi.org/10.1007/s11032-007-9098-6

  85. Paris, H. S. (2016). Genetic Resources of Pumpkins and Squash, Cucurbita spp. In Grumet R., Katzir, N., Garcia- Mas, J. (eds.). Genetics and Genomics of Cucurbitaceae (pp. 111-154). Plant Genetics and Genomics: Crops and Models, vol 20. (pp. 1–26) Switzerland: Springer Cham. https://doi. org/10.1007/7397_2016_3

  86. Piñero, D. (1987). De las bacterias al hombre: la evolución. La Ciencia desde México. Fondo de Cultura Económica, México. http:// bibliotecadigital.ilce.edu.mx/sites/ciencia/volumen1/ciencia2/25/ htm/bacterias.htm

  87. Purugganan, M. D. & Fuller, D. Q. (2009). The nature of selection during plant domestication. Nature, 457, 843–848. http://dx.doi. org/10.1038/nature07895

  88. Qi, J., Liu, X., Shen, D., Miao, H., Xie, B., Li, X., Zeng, P., Wang, S., Shang, Y., Gu, X., Du, Y., Li, Y., Lin, T., Yuan, J., Yang, X., Chen, J., Chen, H., Xiong, X., Huang, K., Fei, Z., Mao, L., Tian, L., Städler, T., Renner, S. S., Kamoun, S., Lucas, W. J., Zhang, Z. & Huang, S. (2013). A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nature Genetics, 45(12), 1510–1515. https://doi.org/10.1038/ng.2801

  89. Qin, C., Yu, C., Shen, Y., Fang, X., Chen, L., Min, J., Wu, Z., Mao, L., Wu, H., Ling-Hu, C., Zhou, H., Lin, H., González-Morales, S., Trejo-Saavedra, D. L., Tian, H., Tang, X., Zhao, M., Huang, Z., Zhou, A., Yao, X., Cui, J., Li, W., Cheng, J., Zhao, S., Xu, M., Luo, Y., Yang, Y., Chen, Z., Feng, Y., Niu, Y., Bi, S., Yang, X., Li, W., Cai, H., Luo, X., Montes-Hernández, S., Leyva-González, M. A., Xiong, Z., He, X., Bai, L., Tan, S., Tang, X., Liu, D., Liu, J., Zhang, S., Chen, M., Zhang, L., Zhang, L., Zhang, Y., Liao, W., Zhang, Y., Wang, M., Lv, X., Wen, B., Liu, H., Luan, H., Zhang, Y., Yang, S., Wang, X., Xu, J., Li, X.,Li, S., Wang, J., Palloix, A., Bosland, P. W., Li, Y., Krogh, A., Rivera-Bustamante, R. F., Herrera-Estrella, L., Yin, Y., Yu, J., Hu, K. & Zhang, Z. (2014). Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proceedings of the National Academy of Sciences, 111(14), 5135–5140. https://doi. org/10.1073/pnas.1400975111

  90. Romay, M. C., Millard, M. J., Glaubitz, J. C., Peiffer, J. a, Swarts, K. L., Casstevens, T. M. Elshire, R. J.,Acharya, C. B.,Mitchell, S. E., Flint-Garcia, S. A., McMullen, M. D., Holland, J. B., Buckler, E. S. & Gardner, C. A. (2013). Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biology, 14(6), R55. https://doi.org/10.1186/gb-2013-14-6-r55

  91. Ruiz Mondragón, K. Y. (2017) Filogeografía y diversidad genética en Cucurbita pepo L. 1753 en México (Tesis de Licenciatura). Facultad de Ciencias, Universidad Nacional Autónoma de México, México. 92 págs

  92. Sanjur, O. I., Piperno, D. R., Andres, T. C. & Wessel-Beaver, L. (2002). Phylogenetic relationships among domesticated and wild species of Cucurbita (Cucurbitaceae) inferred from a mitochondrial gene: Implications for crop plant evolution and areas of origin. Proceedings of the National Academy of Sciences, 99(1), 535–540. https://doi.org/10.1073/pnas.012577299

  93. Sánchez de la Vega, G. (2017) De la cueva a la mesa, y ahora al laboratorio genómico: la diversidad de calabazas de México. Oikos, 17, 11-17. https://goo.gl/SDcfWq

  94. Sánchez de la Vega, G., Castellanos-Morales, G., Gámez, N., Hernández-Rosales, H. S., Vázquez-Lobo, A., Aguirre-Planter, E., Montes-Hernández, S., Lira, R. & Eguiarte, L.E. (2018) Genetic resources in the “calabaza pipiana” pumpkin (Cucurbita argyrosperma) in Mexico: Genetic diversity, genetic differentiation and distribution models. Frontiers in Plant Science, 6, 400. http:// doi.org/10.3389/fpls.2018.00400

  95. Schaefer, H., Heibl, C. & Renner, S.S. (2009). Gourds afloat: a dated phylogeny reveals an Asian origin of the gourd family (Cucurbitaceae) and numerous oversea dispersal events. Proceedings of the Royal Society of London B: Biological Sciences, 276(1658), 843-851. https://doi.org/10.1098/rspb.2008.1447

  96. Schmutz, J., McClean, P. E., Mamidi, S., Wu, G. A., Cannon, S. B., Grimwood, J., Jenkins, J., Shu, S., Song, O., Chavarro, C., Torres- Torres, M., Geffroy, V., Moghaddam, S.M., Gao, D., Abernathy, B., Barry, K., Blair, M., Brick, M.A., Chovatia, M., Gepts, P., Goodstein, D. M., Gonzales, M., Hellsten, U., Hyten, D.L., Jia, G., Kelly, J.D., Kudrna, D., Lee, R., Richard, M.M.S., Miklas, P.N., Osorno, J.M., Rodrigues, J., Thareau, V., Urrea, C.A., Wang, M., Yu, Y., Zhang, M., Wing, R.A., Cregan, P.B., Rokhsar, D.S. & Jackson, S. A. (2014). A reference genome for common bean and genome-wide analysis of dual domestications. Nature Genetics, 46(7), 707–713. https://doi.org/10.1038/ng.3008

  97. Shang, Y., Ma, Y., Zhou, Y., Zhang, H., Duan, L., Chen, H., Zeng, J., Zhou, Q., Wang, S., Gu, W., Liu, M., Ren, J., Gu, X., Zhang, S., Wang, Y., Yasukawa, K., Bouwmeester, H. J., Qi, X., Zhang, Z., Lucas, W. J. & Huang, S. (2014). Biosynthesis, regulation, and domestication of bitterness in cucumber. Science, 346(6213), 1084–1088. https://doi.org/10.1126/science.1259215

  98. Simoons, F.J. (1970). Primary adult lactose intolerance and the milking habit: A problem in biologic and cultural interrelations. Dig. Dis. Sci., 15(8), 695-710.

  99. Šiško, M., Ivančič, A. & Bohanec, B. (2003). Genome size analysis in the genus Cucurbita and its use for determination of interspecific hybrids obtained using the embryorescue technique. Plant Science, 165(3), 663–669. https://doi.org/10.1126/science.1259215

  100. Solbrig, O.T., & Sobrig, D.J. (1994). So shall you reap: Farming and crops in human affairs. Island Press, Washington, D.C., USA.

  101. Sun, H., Wu, S., Zhang, G., Jiao, C., Guo, S., Ren, Y., Zhang, J.,Zhang, H., Gong, G., Jia, Z., Zhang, F., Tian, J., Lucas, W. J., Doyle, J. J., Li, H., Fei, Z. & Xu, Y. (2017). Karyotype Stability and Unbiased Fractionation in the Paleo-Allotetraploid Cucurbita Genomes. Molecular Plant, 10(10), 1293–1306. https://doi.org/10.1016/j. molp.2017.09.003

  102. Villanueva, C. V. (2007). Calabazas cultivadas. Identificación de especies, caracterización y descripción varietal. Chapingo, Estado de México: Universidad Autónoma Chapingo.

  103. Weiling, F. (1959). Genomanalytische Untersuchungen bei Kürbis (Cucurbita L.). Der Züchter, 29(4), 161–179.

  104. Wilson, H. (1990). Gene Flow in Squash Species. BioScience, 40 (6), 449-455. https://doi.org/10.2307/1311392

  105. Whitaker, T. W. (1933). Cytological and Phylogenetic Studies in the Cucurbitaceae. Botanical Gazette, 94(4), 780–790. https://doi. org/10.1086/334347

  106. Whitaker, T. W. (1981). Archeological cucurbits. Economic Botany, 35(4), 460–466. https://doi.org/10.1007/BF02858596

  107. Whitaker, T.W. & Davis, G.N. (1962). Cucurbits: Botany, Cultivation, and Utilization. NewYork: Interscience. Publishers.

  108. Xu, X., Liu, X., Ge, S., Jensen, J. D., Hu, F., Li, X., Dong, Y., Gutenkunst, R. N., Fang, L., Huang, L., Li, J., He, W., Zhang, G., Zheng, X., Zhang, F., Li, Y., Yu, C., Kristiansen, K., Zhang, X., Wang, J., Wright, M., McCouch, S., Nielsen, R., Wang, J. & Wang, W. (2011). Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nature Biotechnology, 30(1), 105–111. https://doi.org/10.1038/nbt.2050

  109. Zeder, M. A. (2015). Core questions in domestication research. Proceedings of the National Academy of Sciences, 112(11), 3191–3198. https://doi.org/10.1073/pnas.1501711112

  110. Zhang, G., Ren, Y., Sun, H., Guo, S., Zhang, F., Zhang, J., Zhang, H., Jia, Z., Fei, Z., Xu, Y. & Li, H. (2015). A high-density genetic map for anchoring genome sequences and identifying QTLs associated with dwarf vine in pumpkin (Cucurbita maxima Duch.). BMC Genomics, 16(1), 1101. https://doi.org/10.1186/ s12864-015-2312-8

  111. Zheng, Y. H., Alverson, A. J., Wang, Q. F. & Palmer, J. D. (2013). Chloroplast phylogeny of Cucurbita: Evolution of the domesticated and wild species. Journal of Systematics and Evolution, 51(3), 326–334. https://doi.org/10.1111/jse.12006

  112. Zizumbo-Villarreal, D. & Terán, S, (1985). Las semillas de la cultura. Los agrosistemas tradicionales una alternativa de desarrollo. Boletín de la Escuela de Ciencias Antropológicas de la Universidad Autónoma de Yucatán, 72, 3–18.

  113. Zizumbo-Villarreal, D., Colunga-GarcíaMarín, P., May-Pat, F, Martínez-Castillo, J. & Mijangos-Cortés, J.O. (2010). Recursos fito-genéticos para la alimentación y la agricultura. In Durán- García R, Méndez-González M (eds.) Biodiversidad y Desarrollo Humano en Yucatán. Mérida, Yucatán: CICY, PPD-FMAM, CONABIO, SEDUMA.

  114. Zizumbo-Villarreal, D. & Colunga-GarcíaMarín, P. (2010). Origin of agriculture and plant domestication in West Mesoamerica. Genetic Resources and Crop Evolution, 57(6), 813–825. https:// doi.org/10.1007/s10722-009-9521-4

  115. Zraidi, A., Stift, G., Pachner, M., Shojaeiyan, A., Gong, L. & Lelley, T. (2007). A consensus map for Cucurbita pepo. Molecular Breeding, 20(4), 375–388. https://doi.org/10.1007/s11032-007-9098-6

  116. Aguirre-Liguori, J. A. (2017) Genómica de poblaciones del maíz silvestre, el teocintle (Zea mays ssp. parviglumis y Zea mays ssp. mexicana) (Tesis de Doctorado). Instituto de Ecología, Universidad Nacional Aútonoma de México, México, 136 págs.

  117. Aguirre-Liguori, J. A., Aguirre-Planter, E. & Eguiarte, L. E. (2016). Genetics and ecology of wild and cultivated maize: domestication and introgression. In: Lira, R., Casas, A. & Blancas, J. (Eds.). Ethnobotany of Mexico: Interactions of People and Plants in Mesoamerica (pp. 403-416). New York: Springer. https://doi. org/10.1007/978-1-4614-6669-7_16

  118. Aguirre-Liguori, J. A., Tenaillon, M. I., Vázquez-Lobo, A., Gaut, B. S., Jaramillo-Correa, J. P., Montes-Hernández, S., Souza, V. & Eguiarte, L. E. (2017). Connecting genomic patterns of local adaptation and niche suitability in teosintes. Molecular Ecology, 26(16), 4226-4240. https://doi.org/10.1111/mec.14203

  119. Aguirre-Liguori, J. A., Gaut, B. S., Jaramillo-Correa, J. P., Tenaillon, M. I., Montes-Hernández S., García-Oliva F., Hearne, S. & Eguiarte L. E. (2018). Divergence with gene flow is driven by local adaptation to temperature and soil phosphorus concentration in teosinte subspecies (Zea mays parviglumis and Zea mays mexicana). In prep.

  120. Aguirre-Liguori, J. A., Ramírez-Barahona, S., Tiffin, P. & Eguiarte, L. E. (2018). Future climate change predicts population extinction by disrupting local adaptation in wild relatives of maize. In prep.

  121. Aguirre Muñoz, A., Golubov, J. & Mandujan, M.C. (2015). Batallas biológicas en las islas de México ¿estamos ganando la guerra? Oikos, 13, 6-10. http://web.ecologia.unam.mx/oikos3.0/index. php/todos-los-numeros/articulos-anteriores/124-batallasbiologicas- en-las-islas-de-mexico-estamos-ganando-la-guerra

  122. Allem, A.C. (2000) The terms genetic resource, biological resource, and biodiversity examined. Environmentalist, 20, 335-341. https:// doi.org/10.1023/A:1006730000698

  123. Altieri, M. A. (1995) Agroecology: The science of sustainable agriculture. 2nd Edition, Boulder,CO, Westview Press.

  124. Álvarez-Yépiz, & Martínez-Yrízar (2015). Huracanes, sequías y heladas: eventos climáticos extremos en México. Oikos, 15, 6-11. http://web.ecologia.unam.mx/oikos3.0/index.php/todos-losnumeros/ articulos-anteriores/165-eventos-climaticos-extremosen- ecosistemas

  125. Barboza, N., Albertazz, F.J., Sibaja-Cordero, J.A., Mora-Umaña, F., Astorga, C. & Ramírez, P. (2012). Analysis of genetic diversity of Cucurbita moschata (D.) germplasm accessions from Mesoamerica revealed by PCR SSCP and chloroplast sequence data. Scientia horticulturae, 134, 60-71. https://doi.org/10.1016/j. scienta.2011.10.02

  126. Beja-Pereira, A., Luikart, G., Englan, P.R., Bradley, D.G., Jann, O.C., Bertorell, G., Chamberlain, A.T., Nunes, T.P., Metodiev, S., Ferrand, N. & Erhardt, G. (2003). Geneculture coevolution between cattle milk protein genes and human lactase genes. Nature Genetics, 35(4), 311-313. https://doi.org/10.1038/ng1263

  127. Bennett, M. D., & Smith, J. B. (1976). Nuclear DNA Amounts in Angiosperms. Philosophical Transactions of the Royal Society B: Biological Sciences, 274(933), 227–274. https://doi.org/10.1098/ rstb.1976.0044

  128. Bennetzen, J., Buckler, E., Chandler, V., Doebley, J., Dorweiler, J., Gaut, B., Freeling, M., Hake, S., Kellogg, E., Poethig, R.S. & Walbot, V. (2001). Genetic evidence and the origin of maize. Latin American Antiquity, 12(1), 84-86. http://www.jstor.org/stable/971759

  129. Blanca, J., Cañizares, J., Roig, C., Ziarsolo, P., Nuez, F. & Picó, B., (2011). Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMC Genomics, 12(1), 104-118. https://doi.org/10.1186/1471-2164- 12-104

  130. Bisognin, D. A. (2002). Origin and evolution of cultivated cucurbits. Ciência Rural, 32(4), 715–723. https://doi.org/10.1590/S0103- 84782002000400028

  131. Castellanos-Morales, G., Paredes, L., Gámez N., Hernández-Rosales, H. S., Sánchez de la Vega, G., Barrera-Redondo, J., Aguirre-Planter, E., Vázquez-Lobo, A., Montes-Hernández, S., Lira-Saade, R. & Eguiarte, L. E. (2018).Historical biogeography and phylogeny of Cucurbita: insights from ancestral area reconstruction and niche evolution. Molecular phylogenetics and evolution, 128, 38-54 https://doi.org/10.1016/j.ympev.2018.07.016

  132. CONABIO (2006). Capital natural y bienestar social. México, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad.

  133. Darwin, C. (1859). On the origin of species by means of natural selection. 1859. London, Murray.

  134. De Candolle, A. (1883). Origine des plantes cultivées (Vol. 43). G. Baillière et cie. https://books.google.com.mx/books?hl=en&lr= &id=vO8HAAAAIAAJ&oi=fnd&pg=PA1&dq=de+Candolle& ots=YOU02O4wkv&sig=jqJOqA1m1moQKUl9NxexYG517v Q#v=onepage&q=de%20Candolle&f=false

  135. Dirzo R., Young, H.S., Galetti, M., Ceballos, G., Isaac, N.J. & Collen, B. (2014). Defaunation in the Anthropocene. Science, 345(6195), 401-406. https://www.researchgate.net/profile/Mauro Galetti/ publication/264247848 Defaunation in the Anthropocene/links/53f 911111c1a0cf27c365cea9088/Defaunation-in-the-Anthropocene. pdf

  136. Eguiarte, L.E. (1986). Una guía para principiantes a la genética de poblaciones. Ciencias, Número especial 1, 30-39. File:///Users/ luis/Downloads/10896-10641-0-PB.pdf

  137. Eguiarte, L. E., Aguirre-Liguori, J. A., Jardón-Barbolla, L., Aguirre- Planter, E. & Souza, V. (2013). Genómica de poblaciones: nada en Evolución va a tener sentido si no es a la luz de la genómica, y nada en genómica tendrá sentido si no es a la luz de la evolución. TIP. Revista especializada en ciencias químicobiológicas, 16(1), 42-56. http://www.scielo.org.mx/scielo. php?script=sci_arttext&pid=S1405-888X2013000100005&lng =es&nrm=iso

  138. Eguiarte, L.E., Equihua Zamora, C. & Espinosa-Asuar, L. (2017). La milpa es un espejo de la diversidad biológica y cultural de México. Oikos, 17, 7-9 http://web.ecologia.unam.mx/oikos3.0/ index.php/todos-los-numeros/articulos-anteriores/210-milpaespejo- de-la-diversidad

  139. Escalante, A.E., Jardón-Barbolla, L., Ramírez-Barahona, S. & Eguiarte, L.E. (2014). The study of biodiversity in the era of massive sequencing. Revista Mexicana de Biodiversidad, 85, 1249-1264. https://doi.org/10.7550/rmb.43498

  140. Esteras, C., Gómez, P., Monforte, A. J., Blanca, J., Vicente-Dolera, N., Roig, C., Nuez, F. & Pico, B. (2012). High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping. BMC Genomics, 13(1), 80. https:// doi.org/10.1186/1471-2164-13-80

  141. FAO (2011). Segundo plan de acción mundial para los recursos fitogenéticos para la alimentación y la agricultura. Comisión de recursos genéticos para la alimentación y la agricultura. Roma, Italia.

  142. Francis, R.C. (2015). Domesticated: evolution in a man-made world. W.E. Norton, New York, USA.

  143. Fustier, M.A., Bandenburg, J.T., Boitard, S., Lapeyronnie, J., Eguiarte, L. E., Vigouroux, Y., Manicacci, D. & Tenaillon, M. I. (2017) Signatures of local adaptation in lowland and highland teosintes from whole-genome sequencing of pooled samples. Molecular Ecology, 26(10), 2738-2756. https://doi.org/10.1111/mec.14082

  144. Gaut, B.S. (2015). Evolution is an experiment: assessing parallelism in crop domestication and experimental evolution: (Nei Lecture, SMBE 2014, Puerto Rico). Molecular Biology and Evolution, 32(7), 1661-1671. https://doi.org/10.1093/molbev/ msv105

  145. Gaut, B.S., Díez, C.M. & Morrell, P.L. (2015). Genomics and the contrasting dynamics of annual and perennial domestication. Trends in Genetics, 31(12), 709-719. https://doi. org/10.1016/j.tig.2015.10.002

  146. Gepts, P. (2014). The contribution of genetic and genomic approaches to plant domestication studies. Current Opinion in Plant Biology, 18(1), 51–59. https://doi.org/10.1016/j.pbi.2014.02.001

  147. Gerbault, P., Liebert, A., Itan, Y., Powell, A., Currat, M., Burger, J., Swallow, D.M. & Thomas, M.G. (2011). Evolution of lactase persistence: an example of human niche construction. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1566), 863-877. https://doi.org/10.1098/ rstb.2010.0268

  148. Gliessmann, S. R. (1983). Allelopathic interactions in crop-weed mixtures: applications for weed management. Journal Chemical Ecology, 9, 991. https://doi.org/10.1007/BF00982206

  149. Gliessmann, S. R. (1990) The ecology and management of traditional farming systems. In: M.A. Altieri and S. B. Hecht (eds.). Agroecology, and Small Farm Development. BocaRaton, Florida, CRC Press,

  150. Gong, L., Stift, G., Kofler, R., Pachner, M. & Lelley, T. (2008). Microsatellites for the genus Cucurbita and an SSR-based genetic linkage map of Cucurbita pepo L. Theoretical and Applied Genetics, 117(1), 37–48. https://doi.org/10.1007/s00122-008- 0750-2

  151. Guerra-García, A., Suárez-Antillano, M., Mastretta-Yanes, A., Delgado- Salinas, A. & Piñero, D. (2017). Domestication genomics of the open-pollinated scarlet runner bean (Phaseoulus coccineus L.). Frontiers in Plant Science, 8, 1891. http://doi.org/10.3389/ fpls.2017.01891

  152. Gustafson, P., Gong, L., Pachner, M., Kalai, K. & Lelley, T. (2008). SSR-based genetic linkage map of Cucurbita moschata and its synteny with Cucurbita pepo. Genome, 51(11), 878–887. https:// doi.org/10.1139/G08-072

  153. Hancock, J. F. (2005). Contributions of domesticated plant studies to our understanding of plant evolution. Annals of Botany, 96(6), 953–963. https://doi.org/10.1093/aob/mci259

  154. Hufford, M.B., Xu, X., van Heerwaarden, J., Pyhäjärvi, T., Chia, J.-M., Cartwright, R. A., Elshire, R. J., Glaubitz, J. C., Guill, K. E., Kaeppler, S. M., Lai, J., Morrell, P. L., Shannon, L. M., Song, C., Springer, N. M., Swanson-Wagner, R. A., Tiffin, P., Wang, J., Zhang, G., Doebley, J., McMullen, M. D., Ware, D., Buckler, E. S., Yang, S. & Ross-Ibarra, J. (2012a). Comparative population genomics of maize domestication and improvement. Nature Genetics, 44(7), 808–811. https://doi.org/10.1038/ng.2309

  155. Hufford, M.B., Martínez-Meyer, E., Gaut, B.S., Eguiarte, L.E. & Tenaillon, M.I. (2012b). Inferences from the historical distribution of wild and domesticated maize provide ecological and evolutionary insight. PLoS One, 7(11), 47659. https//doi. org/10.1371/journal.pone.0047659

  156. Hurd, P. D., Linsley, E. G. & Whitaker, T. W. (1971). Squash and gourd bees (Peponapis, Xenoglossa) and the origin of the cultivated Cucurbita. Evolution, 25, 218–234. https://doi. org/10.1111/j.1558-5646.1971.tb01874.x

  157. Ingram, C.J.E., Mulcare, C.A., Itan, Y., Thomas, M.G. & Swallow, D.M. (2009). Lactose digestion and the evolutionary genetics of lactase persistence. Human Genetics, 124(6), 579–591. https:// doi.org/10.1007/s00439-008-0593-6

  158. Jardón-Barbolla, L. (2015). Orígenes y diversidad a la mitad de las montañas: Nikolai Vavílov, México y las plantas domesticadas. Oikos, 14, 6-10. http://web.ecologia.unam.mx/oikos3.0/index. php/oikos-historico/numeros-anteriores/141-origenes-ydiversidad- a-la-mitad-de-las-montanas-nikolai-vavilov-mexicoy- las-plantas-domesticadas.

  159. Jiao, Y., Zhao, H., Ren, L., Song, W., Zeng, B., Guo, J., Wang, B., Liu, Z., Chen, J., Li, W., Zhang, M., Xie, S. & Lai, J. (2012). Genome-wide genetic changes during modern breeding of maize. Nature Genetics, 44(7), 812–815. https: //doi.org/10.1038/ng.2312Kates, H.R., Soltis, P.S. & Soltis, D.E. (2017). Evolutionary and domestication history of Cucurbita (pumpkin and squash) species inferred from 44 nuclear loci. Molecular Phylogenetics and Evolution, 111, 98–109. https://doi.org/10.1016/j.ympev.2017.03.002

  160. Kato, T.A., Mapes, C., Mera, L.M., Serratos, J.A. & Bye, R.A. (2009). Origen y diversificación del maíz: una revisión analítica. México, D.F.: Universidad Nacional Autónoma de México, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad.

  161. Kistler, L., Newsom, L. A., Ryan, T. M., Clarke, A. C., Smith, B. D. & Perry, G. H. (2015). Gourds and squashes (Cucurbita spp.) adapted to megafaunal extinction and ecological anachronism through domestication. Proceedings of the National Academy of Sciences, 112(49), 15107-15112. https://doi.org/10.1073/pnas.1516109112

  162. Koenig, D., Jimenez-Gomez, J. M., Kimura, S., Fulop, D., Chitwood, D. H., Headland, L. R., Kumar, R., Covington, M. F., Devisetty, U. K., Tat, A. V., Tohge, T., Bolger, A., Schneeberger, K., Ossowski, S., Lanz, C., Xiong, G., Taylor-Teeples, M., Brady, S. M., Pauly, M., Weigel, D., Usadel, B., Fernie, A. R., Peng, J., Sinha, N. R. & Maloof, J. N. (2013). Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. Proceedings of the National Academy of Sciences, 110(28), E2655–E2662. https:// doi.org/10.1073/pnas.1309606110

  163. Laland, K.N., Odling-Smee, J. & Myles, S. (2010). How culture shaped the human genome: bringing genetics and the human sciences together. Nature Reviews Genetics, 11(2), 137-148. http://doi:10.1038/nrg2734

  164. Lam, H.-M., Xu, X., Liu, X., Chen, W., Yang, G., Wong, F.-L., Li, M-W., He, W., Qin, N., Wang, B., Li, J., Jian, M., Wang, J., Shao, G., Wang, J., Sun, S. S-M. & Zhang, G. (2010). Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nature Genetics, 42(12), 1053–1059.

  165. Li, J., Jian, M., Wang, J., Shao, G., Wang, J., Sun, S. S-M. & Zhang, G. (2010). Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nature Genetics, 42(12), 1053–1059.

  166. Li, Y., Zhao, S., Ma, J., Li, D., Yan, L., Li, J., Qi, X., Guo, X., Zhang, L., He, W., Chang, R., Liang, Q., Guo, Y., Ye, C., Wang, X., Tao, Y., Guan, R., Wang, J., Liu, Y., Jin, L., Zhang, X., Liu, Z., Zhang, L., Chen, J., Wang, K., Nielsen, R., Li, R., Chen, P., Li, W., Reif, J. C., Purugganan, M., Wang, J., Zhang, M., Wang, J. & Qiu, L-J. (2013). Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing. BMC Genomics, 14(1), 579. https://doi.org/10.1186/1471-2164-14-579

  167. Lin, T., Zhu, G., Zhang, J., Xu, X., Yu, Q., Zheng, Z., Zhang, Z., Lun, Y., Li, S., Wang, X., Huang, Z., Li, J., Zhang, C., Wang, T., Zhang, Y., Wang, A., Zhang, Y., Lin, K., Li, C., Xiong, G., Xue, Y., Mazzucato, A., Causse, M., Fei, Z., Giovannoni, J. J., Chetelat, R. T., Zamir, D., Städler, T., Li, J., Ye, Z., Du, Y. & Huang, S. (2014). Genomic analyses provide insights into the history of tomato breeding. Nature Genetics, 46(11), 1220–1226. https:// doi.org/10.1038/ng.3117

  168. Lira-Saade, R. (1995). Estudios taxonómicos y ecogeográficos de las Cucurbitaceae latinoamericanas de importancia económica. Systematic and ecogeographic studies on crop genepools. 9. International Plant Genetic Resources Institute, Rome.

  169. Lira, R., Andres, T.C. & Monro, A.K. (2009a). Cucurbita L. In Davids, G., Sousa, M.S., Knapp, S. & Chiang, F. (eds.). Flora Mesoamericana Vol. 4 (pp. 9-13). Cucurbitaceae a Polemoniaceae. Missouri: Botanical Garden Press.

  170. Lira, R., Eguiarte, L. E. & Montes-Hernández, S. (2009b). Proyecto Recopilación y análisis de la información existente de las especies de los géneros Cucurbita y Sechium que crecen y / o se cultivan en México. México, D.F.: CONABIO, 107p.

  171. Lira, R., Eguiarte, L., Montes, S., Zizumbo-Villarreal, D., Marín, P.C.G. & Quesada, M. (2016). Homo sapiens–Cucurbita interaction in Mesoamerica: Domestication, Dissemination, and Diversification. In Lira, R., Casas, A. & Blancas, J. (eds.). Ethnobotany of Mexico (pp. 389-401). Ethnobiology. New York: Springer. https://doi. org/10.1007/978-1-4614-6669-7_15

  172. Lozada-Aranda, M., Rojas Barrera, I., Mastretta Yanes, A., Ponce- Mendoza, A., Burgeff, C., Orjuela-R, M. A. & Oliveros, O. (2017). Las milpas de México. Oikos, 17, 10-12. http://goo.gl/fsFQxq

  173. Mangelsdorf, P.C. (1974). Corn. Its origin, evolution and improvement. Cambridge, Massachusetts: Belknap Press of Harvard University Press.

  174. Medina, F.M. & Nogales, M. (2009). A review on the impacts of feral cats (Felis silvestris catus) in the Canary Islands: implications for the conservation of its endangered fauna. Biodiversity and Conservation, 18(4), 829-846. https://doi.org/10.1007/s10531- 008-9503-4

  175. Meyer, R. S. & Purugganan, M. D. (2013). Evolution of crop species: genetics of domestication and diversification. Nature Reviews. Genetics, 14, 840–852. https://doi.org/10.1038/nrg3605

  176. Montero-Pau, J., Blanca, J., Bombarely, A., Ziarsolo, P., Esteras, C., Martí-Gómez, C., Ferriol, M., Gómez, P., Jamilena, M., Mueller, L., Picó, B. & Cañizares, J. (2017). De novo assembly of the zucchini genome reveals a whole genome duplication associated with the origin of the Cucurbita genus. Plant Biotechnology J., 12(10), 3218–3221. https://doi.org/10.1111/pbi.12860

  177. Montes- Hernández, S. (2002). Flujo génico en calabaza (Cucurbita spp.) dentro del sistema milpa en la parte central de México (Tesis de Doctorado). Facultad de Ciencias, Universidad Nacional Autónoma de México, México. 107 págs.

  178. Montes-Hernández, S. & Eguiarte, L. E. (2002). Genetic structure and indirect estimates of gene flow in three taxa of Cucurbita (Cucurbitaceae) in western Mexico. Am. J. Bot., 89, 1156- 1163. https://doi.org/10.3732/ajb.89.7.1156

  179. Montes-Hernández, S., Merrick, L.C. & Eguiarte, L.E. (2005) Maintenance of squash (Cucurbita spp.) landrace diversity by farmers’ activities in Mexico. Genetic Resource and Crop Evolution, 52(6), 697-707. http://doi.org/10.1017/s10722-003- 6018-4

  180. Moreno-Letelier, A., Liguori, J.A., Tenaillon, M.I., Piñero, D., Gaut, B.S., Lobo, A.V. & Eguiarte, L.E. (2018). Was maize domesticated in the Balsas Basin? Complex patterns of genetic divergence, gene flow and ancestral introgressions among Zea subspecies suggest an alternative scenario. bioRxiv, p. 239707. DOI: https:// doi.org/10.1101/239707

  181. Nee, M. (1990). The domestication of Cucurbita (Cucurbitaceae). Economic Botany, 44(Suppl 3), 56–68. https://doi.org/10.1007/ BF02860475

  182. Ott, A., Liu, S., Schnable, J.C., Yeh, C.T., Wang, K.S. & Schnable, P.S. (2017). tGBS® genotyping-by-sequencing enables reliable genotyping of heterozygous loci. Nucleic Acids Research, 45(21), e178. https://doi.org/10.1093/nar/gkx853

  183. Paredes Torres, L. M. (2016). Filogenia molecular del género Cucurbita L. (Cucurbitaceae) usando secuencias de cloroplasto (Tesis de Licenciatura). FES Iztacala, Universidad Nacional Autónoma de México. México. 96 págs. 165(3), 663–669. https://doi.org/10.1126/science.1259215

  184. Solbrig, O.T., & Sobrig, D.J. (1994). So shall you reap: Farming and crops in human affairs. Island Press, Washington, D.C., USA.

  185. Sun, H., Wu, S., Zhang, G., Jiao, C., Guo, S., Ren, Y., Zhang, J.,Zhang, H., Gong, G., Jia, Z., Zhang, F., Tian, J., Lucas, W. J., Doyle, J. J., Li, H., Fei, Z. & Xu, Y. (2017). Karyotype Stability and Unbiased Fractionation in the Paleo-Allotetraploid Cucurbita Genomes. Molecular Plant, 10(10), 1293–1306. https://doi.org/10.1016/j. molp.2017.09.003

  186. Villanueva, C. V. (2007). Calabazas cultivadas. Identificación de especies, caracterización y descripción varietal. Chapingo, Estado de México: Universidad Autónoma Chapingo.

  187. Weiling, F. (1959). Genomanalytische Untersuchungen bei Kürbis (Cucurbita L.). Der Züchter, 29(4), 161–179.

  188. Wilson, H. (1990). Gene Flow in Squash Species. BioScience, 40 (6), 449-455. https://doi.org/10.2307/1311392

  189. Whitaker, T. W. (1933). Cytological and Phylogenetic Studies in the Cucurbitaceae. Botanical Gazette, 94(4), 780–790. https://doi. org/10.1086/334347

  190. Whitaker, T. W. (1981). Archeological cucurbits. Economic Botany, 35(4), 460–466. https://doi.org/10.1007/BF02858596

  191. Whitaker, T.W. & Davis, G.N. (1962). Cucurbits: Botany, Cultivation, and Utilization. NewYork: Interscience. Publishers.

  192. Xu, X., Liu, X., Ge, S., Jensen, J. D., Hu, F., Li, X., Dong, Y., Gutenkunst, R. N., Fang, L., Huang, L., Li, J., He, W., Zhang, G., Zheng, X., Zhang, F., Li, Y., Yu, C., Kristiansen, K., Zhang, X., Wang, J., Wright, M., McCouch, S., Nielsen, R., Wang, J. & Wang, W. (2011). Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nature Biotechnology, 30(1), 105–111. https://doi.org/10.1038/nbt.2050

  193. Zeder, M. A. (2015). Core questions in domestication research. Proceedings of the National Academy of Sciences, 112(11), 3191–3198. https://doi.org/10.1073/pnas.1501711112

  194. Zhang, G., Ren, Y., Sun, H., Guo, S., Zhang, F., Zhang, J., Zhang, H., Jia, Z., Fei, Z., Xu, Y. & Li, H. (2015). A high-density genetic map for anchoring genome sequences and identifying QTLs associated with dwarf vine in pumpkin (Cucurbita maxima Duch.). BMC Genomics, 16(1), 1101. https://doi.org/10.1186/ s12864-015-2312-8

  195. Zheng, Y. H., Alverson, A. J., Wang, Q. F. & Palmer, J. D. (2013). Chloroplast phylogeny of Cucurbita: Evolution of the domesticated and wild species. Journal of Systematics and Evolution, 51(3), 326–334. https://doi.org/10.1111/jse.12006

  196. Zizumbo-Villarreal, D. & Terán, S, (1985). Las semillas de la cultura. Los agrosistemas tradicionales una alternativa de desarrollo. Boletín de la Escuela de Ciencias Antropológicas de la Universidad Autónoma de Yucatán, 72, 3–18.

  197. Zizumbo-Villarreal, D., Colunga-GarcíaMarín, P., May-Pat, F, Martínez-Castillo, J. & Mijangos-Cortés, J.O. (2010). Recursos fito-genéticos para la alimentación y la agricultura. In Durán- García R, Méndez-González M (eds.) Biodiversidad y Desarrollo Humano en Yucatán. Mérida, Yucatán: CICY, PPD-FMAM, CONABIO, SEDUMA.

  198. Zizumbo-Villarreal, D. & Colunga-GarcíaMarín, P. (2010). Origin of agriculture and plant domestication in West Mesoamerica. Genetic Resources and Crop Evolution, 57(6), 813–825. https:// doi.org/10.1007/s10722-009-9521-4

  199. Zraidi, A., Stift, G., Pachner, M., Shojaeiyan, A., Gong, L. & Lelley, T. (2007). A consensus map for Cucurbita pepo. Molecular Breeding, 20(4), 375–388. https://doi.org/10.1007/s11032-007-9098-6

  200. Paris, H. S. (2016). Genetic Resources of Pumpkins and Squash, Cucurbita spp. In Grumet R., Katzir, N., Garcia- Mas, J. (eds.). Genetics and Genomics of Cucurbitaceae (pp. 111-154). Plant Genetics and Genomics: Crops and Models, vol 20. (pp. 1–26) Switzerland: Springer Cham. https://doi. org/10.1007/7397_2016_3

  201. Piñero, D. (1987). De las bacterias al hombre: la evolución. La Ciencia desde México. Fondo de Cultura Económica, México. http:// bibliotecadigital.ilce.edu.mx/sites/ciencia/volumen1/ciencia2/25/ htm/bacterias.htm

  202. Purugganan, M. D. & Fuller, D. Q. (2009). The nature of selection during plant domestication. Nature, 457, 843–848. http://dx.doi. org/10.1038/nature07895

  203. Qi, J., Liu, X., Shen, D., Miao, H., Xie, B., Li, X., Zeng, P., Wang, S., Shang, Y., Gu, X., Du, Y., Li, Y., Lin, T., Yuan, J., Yang, X., Chen, J., Chen, H., Xiong, X., Huang, K., Fei, Z., Mao, L., Tian, L., Städler, T., Renner, S. S., Kamoun, S., Lucas, W. J., Zhang, Z. & Huang, S. (2013). A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nature Genetics, 45(12), 1510–1515. https://doi.org/10.1038/ng.2801

  204. Qin, C., Yu, C., Shen, Y., Fang, X., Chen, L., Min, J., Wu, Z., Mao, L., Wu, H., Ling-Hu, C., Zhou, H., Lin, H., González-Morales, S., Trejo-Saavedra, D. L., Tian, H., Tang, X., Zhao, M., Huang, Z., Zhou, A., Yao, X., Cui, J., Li, W., Cheng, J., Zhao, S., Xu, M., Luo, Y., Yang, Y., Chen, Z., Feng, Y., Niu, Y., Bi, S., Yang, X., Li, W., Cai, H., Luo, X., Montes-Hernández, S., Leyva-González, M. A., Xiong, Z., He, X., Bai, L., Tan, S., Tang, X., Liu, D., Liu, J., Zhang, S., Chen, M., Zhang, L., Zhang, L., Zhang, Y., Liao, W., Zhang, Y., Wang, M., Lv, X., Wen, B., Liu, H., Luan, H., Zhang, Y., Yang, S., Wang, X., Xu, J., Li, X.,Li, S., Wang, J., Palloix, A., Bosland, P. W., Li, Y., Krogh, A., Rivera-Bustamante, R. F., Herrera-Estrella, L., Yin, Y., Yu, J., Hu, K. & Zhang, Z. (2014). Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proceedings of the National Academy of Sciences, 111(14), 5135–5140. https://doi. org/10.1073/pnas.1400975111

  205. Romay, M. C., Millard, M. J., Glaubitz, J. C., Peiffer, J. a, Swarts, K. L., Casstevens, T. M. Elshire, R. J.,Acharya, C. B.,Mitchell, S. E., Flint-Garcia, S. A., McMullen, M. D., Holland, J. B., Buckler, E. S. & Gardner, C. A. (2013). Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biology, 14(6), R55. https://doi.org/10.1186/gb-2013-14-6-r55

  206. Ruiz Mondragón, K. Y. (2017) Filogeografía y diversidad genética en Cucurbita pepo L. 1753 en México (Tesis de Licenciatura). Facultad de Ciencias, Universidad Nacional Autónoma de México, México. 92 págs

  207. Sanjur, O. I., Piperno, D. R., Andres, T. C. & Wessel-Beaver, L. (2002). Phylogenetic relationships among domesticated and wild species of Cucurbita (Cucurbitaceae) inferred from a mitochondrial gene: Implications for crop plant evolution and areas of origin. Proceedings of the National Academy of Sciences, 99(1), 535–540. https://doi.org/10.1073/pnas.012577299

  208. Sánchez de la Vega, G. (2017) De la cueva a la mesa, y ahora al laboratorio genómico: la diversidad de calabazas de México. Oikos, 17, 11-17. https://goo.gl/SDcfWq

  209. Sánchez de la Vega, G., Castellanos-Morales, G., Gámez, N., Hernández-Rosales, H. S., Vázquez-Lobo, A., Aguirre-Planter, E., Montes-Hernández, S., Lira, R. & Eguiarte, L.E. (2018) Genetic resources in the “calabaza pipiana” pumpkin (Cucurbita argyrosperma) in Mexico: Genetic diversity, genetic differentiation and distribution models. Frontiers in Plant Science, 6, 400. http:// doi.org/10.3389/fpls.2018.00400

  210. Schaefer, H., Heibl, C. & Renner, S.S. (2009). Gourds afloat: a dated phylogeny reveals an Asian origin of the gourd family (Cucurbitaceae) and numerous oversea dispersal events. Proceedings of the Royal Society of London B: Biological Sciences, 276(1658), 843-851. https://doi.org/10.1098/rspb.2008.1447

  211. Schmutz, J., McClean, P. E., Mamidi, S., Wu, G. A., Cannon, S. B., Grimwood, J., Jenkins, J., Shu, S., Song, O., Chavarro, C., Torres- Torres, M., Geffroy, V., Moghaddam, S.M., Gao, D., Abernathy, B., Barry, K., Blair, M., Brick, M.A., Chovatia, M., Gepts, P., Goodstein, D. M., Gonzales, M., Hellsten, U., Hyten, D.L., Jia, G., Kelly, J.D., Kudrna, D., Lee, R., Richard, M.M.S., Miklas, P.N., Osorno, J.M., Rodrigues, J., Thareau, V., Urrea, C.A., Wang, M., Yu, Y., Zhang, M., Wing, R.A., Cregan, P.B., Rokhsar, D.S. & Jackson, S. A. (2014). A reference genome for common bean and genome-wide analysis of dual domestications. Nature Genetics, 46(7), 707–713. https://doi.org/10.1038/ng.3008

  212. Shang, Y., Ma, Y., Zhou, Y., Zhang, H., Duan, L., Chen, H., Zeng, J., Zhou, Q., Wang, S., Gu, W., Liu, M., Ren, J., Gu, X., Zhang, S., Wang, Y., Yasukawa, K., Bouwmeester, H. J., Qi, X., Zhang, Z., Lucas, W. J. & Huang, S. (2014). Biosynthesis, regulation, and domestication of bitterness in cucumber. Science, 346(6213), 1084–1088. https://doi.org/10.1126/science.1259215

  213. Simoons, F.J. (1970). Primary adult lactose intolerance and the milking habit: A problem in biologic and cultural interrelations. Dig. Dis. Sci., 15(8), 695-710.

  214. Šiško, M., Ivančič, A. & Bohanec, B. (2003). Genome size analysis in the genus Cucurbita and its use for determination of interspecific hybrids obtained using the embryorescue technique. Plant Science, 165(3), 663–669. https://doi.org/10.1126/science.1259215

  215. Solbrig, O.T., & Sobrig, D.J. (1994). So shall you reap: Farming and crops in human affairs. Island Press, Washington, D.C., USA.

  216. Sun, H., Wu, S., Zhang, G., Jiao, C., Guo, S., Ren, Y., Zhang, J.,Zhang, H., Gong, G., Jia, Z., Zhang, F., Tian, J., Lucas, W. J., Doyle, J. J., Li, H., Fei, Z. & Xu, Y. (2017). Karyotype Stability and Unbiased Fractionation in the Paleo-Allotetraploid Cucurbita Genomes. Molecular Plant, 10(10), 1293–1306. https://doi.org/10.1016/j. molp.2017.09.003

  217. Villanueva, C. V. (2007). Calabazas cultivadas. Identificación de especies, caracterización y descripción varietal. Chapingo, Estado de México: Universidad Autónoma Chapingo.

  218. Weiling, F. (1959). Genomanalytische Untersuchungen bei Kürbis (Cucurbita L.). Der Züchter, 29(4), 161–179.

  219. Wilson, H. (1990). Gene Flow in Squash Species. BioScience, 40 (6), 449-455. https://doi.org/10.2307/1311392

  220. Whitaker, T. W. (1933). Cytological and Phylogenetic Studies in the Cucurbitaceae. Botanical Gazette, 94(4), 780–790. https://doi. org/10.1086/334347

  221. Whitaker, T. W. (1981). Archeological cucurbits. Economic Botany, 35(4), 460–466. https://doi.org/10.1007/BF02858596

  222. Whitaker, T.W. & Davis, G.N. (1962). Cucurbits: Botany, Cultivation, and Utilization. NewYork: Interscience. Publishers.

  223. Xu, X., Liu, X., Ge, S., Jensen, J. D., Hu, F., Li, X., Dong, Y., Gutenkunst, R. N., Fang, L., Huang, L., Li, J., He, W., Zhang, G., Zheng, X., Zhang, F., Li, Y., Yu, C., Kristiansen, K., Zhang, X., Wang, J., Wright, M., McCouch, S., Nielsen, R., Wang, J. & Wang, W. (2011). Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nature Biotechnology, 30(1), 105–111. https://doi.org/10.1038/nbt.2050

  224. Zeder, M. A. (2015). Core questions in domestication research. Proceedings of the National Academy of Sciences, 112(11), 3191–3198. https://doi.org/10.1073/pnas.1501711112

  225. Zhang, G., Ren, Y., Sun, H., Guo, S., Zhang, F., Zhang, J., Zhang, H., Jia, Z., Fei, Z., Xu, Y. & Li, H. (2015). A high-density genetic map for anchoring genome sequences and identifying QTLs associated with dwarf vine in pumpkin (Cucurbita maxima Duch.). BMC Genomics, 16(1), 1101. https://doi.org/10.1186/ s12864-015-2312-8

  226. Zheng, Y. H., Alverson, A. J., Wang, Q. F. & Palmer, J. D. (2013). Chloroplast phylogeny of Cucurbita: Evolution of the domesticated and wild species. Journal of Systematics and Evolution, 51(3), 326–334. https://doi.org/10.1111/jse.12006

  227. Zizumbo-Villarreal, D. & Terán, S, (1985). Las semillas de la cultura. Los agrosistemas tradicionales una alternativa de desarrollo. Boletín de la Escuela de Ciencias Antropológicas de la Universidad Autónoma de Yucatán, 72, 3–18.

  228. Zizumbo-Villarreal, D., Colunga-GarcíaMarín, P., May-Pat, F, Martínez-Castillo, J. & Mijangos-Cortés, J.O. (2010). Recursos fito-genéticos para la alimentación y la agricultura. In Durán- García R, Méndez-González M (eds.) Biodiversidad y Desarrollo Humano en Yucatán. Mérida, Yucatán: CICY, PPD-FMAM, CONABIO, SEDUMA.

  229. Zizumbo-Villarreal, D. & Colunga-GarcíaMarín, P. (2010). Origin of agriculture and plant domestication in West Mesoamerica. Genetic Resources and Crop Evolution, 57(6), 813–825. https:// doi.org/10.1007/s10722-009-9521-4

  230. Zraidi, A., Stift, G., Pachner, M., Shojaeiyan, A., Gong, L. & Lelley, T. (2007). A consensus map for Cucurbita pepo. Molecular Breeding, 20(4), 375–388. https://doi.org/10.1007/s11032-007-9098-6




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2018;21

ARTíCULOS SIMILARES

CARGANDO ...