medigraphic.com
ENGLISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Digital)
ISSN 1405-888X (Impreso)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2018, Número S1

<< Anterior Siguiente >>

TIP Rev Esp Cienc Quim Biol 2018; 21 (S1)


Acoplamiento Molecular: Avances Recientes y Retos

Prieto-Martínez FD, Arciniega M, Medina-Franco JL
Texto completo Cómo citar este artículo Artículos similares

Idioma: Ingles.
Referencias bibliográficas: 183
Paginas: 65-87
Archivo PDF: 919.87 Kb.


PALABRAS CLAVE

descubrimiento de nuevos fármacos, diseño de fármacos asistido por computadora, quimioinformática, relaciones estructura-actividad.

RESUMEN

El acoplamiento molecular automatizado tiene como objetivo proponer un modelo de unión entre dos moléculas. Este método ha sido útil en química farmacéutica y en el descubrimiento de nuevos fármacos por medio del entendimiento de las fuerzas de interacción involucradas en el reconocimiento molecular. Durante los últimos 20 años se ha modificado extensamente la técnica de acoplamiento molecular dando resultados precisos en la predicción de los modos de unión. Sin embargo, hay algunas áreas que requieren ser mejoradas substancialmente. En este trabajo se revisan principios, técnicas y algoritmos usados en los programas computacionales del acoplamiento molecular con enfoque en la interacción proteína-ligando aplicado al descubrimiento de nuevos fármacos. También se discuten las estrategias dirigidas a solucionar los principales retos de esta técnica computacional.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Adeniyi, A. A., & Soliman, M. E. S. (2017). Implementing QM in docking calculations: is it a waste of computational time? Drug Discovery Today, 22(8), 1216–1223. https://doi.org/10.1016/j. drudis.2017.06.012

  2. Agarwal, S., & Mehrotra, R. (2016). An overview of Molecular Docking. JSM Chemistry., 4(2), 1024.

  3. Ai, Y., Yu, L., Tan, X., Chai, X., & Liu, S. (2016). Discovery of Covalent Ligands via Noncovalent Docking by Dissecting Covalent Docking Based on a Steric-Clashes Alleviating Receptor (SCAR) Strategy. Journal of Chemical Information and Modeling, 56(8), 1563–1575. https://doi.org/10.1021/acs. jcim.6b00334

  4. Allen, W. J., Balius, T. E., Mukherjee, S., Brozell, S. R., Moustakas, D. T., Lang, P. T., Case, D. A., Kuntz, I. D., Rizzo, R. C. (2015). DOCK 6: Impact of new features and current docking performance. Journal of Computational Chemistry, 36(15), 1132–1156. https://doi.org/10.1002/jcc.23905

  5. Alogheli, H., Olanders, G., Schaal, W., Brandt, P., & Karlén, A. (2017). Docking of Macrocycles: Comparing Rigid and Flexible Docking in Glide. Journal of Chemical Information and Modeling, 57(2), 190–202. https://doi.org/10.1021/acs. jcim.6b00443

  6. Alonso, H., Bliznyuk, A. A., & Gready, J. E. (2006). Combining docking and molecular dynamic simulations in drug design. Medicinal Research Reviews, 26(5), 531–568. https://doi. org/10.1002/med.20067

  7. Altuntaş, S., Bozkus, Z., & Fraguela, B. B. (2016). GPU accelerated molecular docking simulation with genetic algorithms. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 9598, pp. 134–146). Springer, Cham. https://doi.org/10.1007/978-3-319-31153-1_10

  8. Anighoro, A., & Bajorath, J. (2016). Three-Dimensional Similarity in Molecular Docking: Prioritizing Ligand Poses on the Basis of Experimental Binding Modes. Journal of Chemical Information and Modeling, 56(3), 580–587. https://doi.org/10.1021/acs. jcim.5b00745

  9. Ashtawy, H. M., & Mahapatra, N. R. (2014). Molecular Docking for Drug Discovery: Machine-Learning Approaches for Native Pose Prediction of Protein-Ligand Complexes. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 8452 LNBI, pp. 15–32). Springer International Publishing. https://doi.org/10.1007/978-3-319-09042-9_2

  10. Awoonor-Williams, E., Walsh, A. G., & Rowley, C. N. (2017). Modeling covalent-modifier drugs. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1865(11), 1664–1675. https://doi. org/10.1016/j.bbapap.2017.05.009

  11. Bai, F., Liao, S., Gu, J., Jiang, H., Wang, X., & Li, H. (2015). An accurate metalloprotein-specific scoring function and molecular docking program devised by a dynamic sampling and iteration optimization strategy. Journal of Chemical Information and Modeling, 55(4), 833–847. https://doi.org/10.1021/ci500647f

  12. Ballester, P. J., Schreyer, A., & Blundell, T. L. (2014). Does a more precise chemical description of protein-ligand complexes lead to more accurate prediction of binding affinity? Journal of Chemical Information and Modeling, 54(3), 944–955. https:// doi.org/10.1021/ci500091r

  13. Bansal, N., Zheng, Z., & Merz, K. M. (2016). Incorporation of side chain flexibility into protein binding pockets using MTflex. Bioorganic and Medicinal Chemistry, 24(20), 4978–4987. https://doi.org/10.1016/j.bmc.2016.08.030

  14. Barducci, A., Bonomi, M., & Parrinello, M. (2011). Metadynamics. Wiley Interdisciplinary Reviews: Computational Molecular Science, 1(5), 826–843. https://doi.org/10.1002/wcms.31

  15. Ben-Shimon, A., & Niv, M. Y. (2015). AnchorDock: Blind and flexible anchor-driven peptide docking. Structure, 23(5), 929–940. https://doi.org/10.1016/j.str.2015.03.010

  16. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235

  17. Bjerrum, E. J. (2016). Machine learning optimization of cross docking accuracy. Computational Biology and Chemistry, 62, 133–144. https://doi.org/10.1016/j.compbiolchem.2016.04.005

  18. Bonvin, A. M. (2006). Flexible protein-protein docking. Current Opinion in Structural Biology, 16(2), 194–200. https://doi. org/10.1016/j.sbi.2006.02.002

  19. Bottegoni, G., Kufareva, I., Totrov, M., & Abagyan, R. (2009). Fourdimensional docking: A fast and accurate account of discrete receptor flexibility in ligand docking. Journal of Medicinal Chemistry, 52(2), 397–406. https://doi.org/10.1021/jm8009958

  20. Bozorg-Haddad, O. (Ed.). (2018). Advanced Optimization by Nature- Inspired Algorithms (Vol. 720). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-10-5221-7

  21. Brás, N. F., Cerqueira, N. M. F. S. A., Sousa, S. F., Fernandes, P. A., & Ramos, M. J. (2014). Protein ligand docking in drug discovery. Protein Modelling. https://doi.org/10.1007/978-3- 319-09976-7_11

  22. Brown, C. D., & Davis, H. T. (2006). Receiver operating characteristics curves and related decision measures: A tutorial. Chemometrics and Intelligent Laboratory Systems, 80(1), 24–38. https://doi. org/10.1016/j.chemolab.2005.05.004

  23. Cereto-Massagué, A., Ojeda, M. J., Valls, C., Mulero, M., Pujadas, G., & Garcia-Vallve, S. (2015). Tools for in silico target fishing. Methods, 71, 98–103. https://doi.org/10.1016/j. ymeth.2014.09.006

  24. Chaput, L., & Mouawad, L. (2017). Efficient conformational sampling and weak scoring in docking programs? Strategy of the wisdom of crowds. Journal of Cheminformatics, 9. https:// doi.org/10.1186/s13321-017-0227-x

  25. Charifson, P. S., Corkery, J. J., Murcko, M. A., & Walters, W. P. (1999). Consensus scoring: A method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins. Journal of Medicinal Chemistry, 42(25), 5100–5109. https://doi.org/10.1021/jm990352k 25. Chen, D., Menche, G., Power, T. D., Sower, L., Peterson, J. W., & Schein, C. H. (2007). Accounting for ligand-bound metal ions in docking small molecules on adenylyl cyclase toxins. Proteins: Structure, Function, and Bioinformatics, 67(3), 593–605. https://doi.org/10.1002/prot.21249

  26. Clark, A. J., Tiwary, P., Borrelli, K., Feng, S., Miller, E. B., Abel, R., Friesner R. A., Berne, B. J. (2016). Prediction of Protein–Ligand Binding Poses via a Combination of Induced Fit Docking and Metadynamics Simulations. Journal of Chemical Theory and Computation, 12(6), 2990–2998. https://doi.org/10.1021/acs. jctc.6b00201

  27. Cole, J., Davis, E., Jones, G., & Sage, C. R. (2017). Molecular Docking—A Solved Problem? In Comprehensive Medicinal Chemistry III (pp. 297–318). Elsevier. https://doi.org/10.1016/ B978-0-12-409547-2.12352-2

  28. Corbeil, C. R., & Moitessier, N. (2009). Docking ligands into flexible and solvated macromolecules. 3. Impact of input ligand conformation, protein flexibility, and water molecules on the accuracy of docking programs. Journal of Chemical Information and Modeling, 49(4), 997–1009. https://doi. org/10.1021/ci8004176

  29. Craig, I. R., Essex, J. W., & Spiegel, K. (2010). Ensemble docking into multiple crystallographically derived protein structures: An evaluation based on the statistical analysis of enrichments. Journal of Chemical Information and Modeling, 50(4), 511–524. https://doi.org/10.1021/ci900407c

  30. Crawford, T. D., Tsui, V., Flynn, E. M., Wang, S., Taylor, A. M., Côté, A., Audia, J. E., Beresini, M. H., Burdick D. J., Cummings, R., Dakin, L. A., Duplessis, M., Good, A. C., Hewitt M. C., Huang, H., Jayaram, H., Kiefer, J. R., Jiang, Y., Murray, J., Nasveschuk, C. G., Pardo, E., Poy, F., Romero, F. A., Tang, Y., Wang, J., Xu, Z., Zawadzke, L. E., Zhu, X., Albrecht, B. K., Magnuson, S. R., Bellon, S., Cochran, A. G. (2016). Diving into the Water: Inducible Binding Conformations for BRD4, TAF1(2), BRD9, and CECR2 Bromodomains. Journal of Medicinal Chemistry, 59(11), 5391–5402. https:// doi.org/10.1021/acs.jmedchem.6b00264

  31. Cross, J. B., Thompson, D. C., Rai, B. K., Baber, J. C., Fan, K. Y., Hu, Y., & Humblet, C. (2009). Comparison of Several Molecular Docking Programs: Pose Prediction and Virtual Screening Accuracy. Journal of Chemical Information and Modeling, 49(6), 1455–1474. https://doi.org/10.1021/ ci900056c

  32. Da, C., & Kireev, D. (2014). Structural Protein–Ligand Interaction Fingerprints (SPLIF) for Structure-Based Virtual Screening: Method and Benchmark Study. Journal of Chemical Information and Modeling, 54(9), 2555–2561. https://doi. org/10.1021/ci500319f

  33. Dallakyan, S., & Olson, A. J. (2015). Small-Molecule Library Screening by Docking with PyRx. In Methods in molecular biology (Clifton, N.J.) (Vol. 1263, pp. 243–250). https://doi. org/10.1007/978-1-4939-2269-7_19

  34. Dastmalchi, S. (2016). Methods and Algorithms for Molecular Docking-Based Drug Design and Discovery. (S. Dastmalchi, M. Hamzeh-Mivehroud, & B. Sokouti, Eds.). IGI Global. https://doi.org/10.4018/978-1-5225-0115-2

  35. De Cesco, S., Kurian, J., Dufresne, C., Mittermaier, A., & Moitessier, N. (2017). Covalent inhibitors design and discovery. European Journal of Medicinal Chemistry, 138, 96–114. https://doi. org/10.1016/j.ejmech.2017.06.019

  36. Debroise, T., Shakhnovich, E. I., & Chéron, N. (2017). A Hybrid Knowledge-Based and Empirical Scoring Function for Protein-Ligand Interaction: SMoG2016. Journal of Chemical Information and Modeling, 57(3), 584–593. https://doi. org/10.1021/acs.jcim.6b00610

  37. Dhananjayan, K. (2015). Molecular Docking Study Characterization of Rare Flavonoids at the Nac-Binding Site of the First Bromodomain of BRD4 (BRD4 BD1). Journal of Cancer Research, 2015, 1–15. https://doi.org/10.1155/2015/762716

  38. Dheer, D., Jyoti, Gupta, P. N., & Shankar, R. (2018). Tacrolimus: An updated review on delivering strategies for multifarious diseases. European Journal of Pharmaceutical Sciences, 114, 217–227. https://doi.org/10.1016/j.ejps.2017.12.017

  39. Dias, R., & de Azevedo Jr., W. (2008). Molecular Docking Algorithms. Current Drug Targets, 9(12), 1040–1047. https://doi. org/10.2174/138945008786949432

  40. Dominguez, C., Boelens, R., & Bonvin, A. M. J. J. (2003). HADDOCK: A protein-protein docking approach based on biochemical or biophysical information. Journal of the American Chemical Society, 125(7), 1731–1737. https://doi.org/10.1021/ja026939x

  41. Du, J., Bleylevens, I. W. M., Bitorina, A. V., Wichapong, K., & Nicolaes, G. A. F. (2014). Optimization of compound ranking for structure-based virtual ligand screening using an established FRED-surflex consensus approach. Chemical Biology and Drug Design, 83(1), 37–51. https://doi.org/10.1111/cbdd.12202

  42. Ehrt, C., Brinkjost, T., & Koch, O. (2016). Impact of Binding Site Comparisons on Medicinal Chemistry and Rational Molecular Design. Journal of Medicinal Chemistry, 59(9), 4121–4151. https://doi.org/10.1021/acs.jmedchem.6b00078

  43. Eldridge, M. D., Murray, C. W., Auton, T. R., Paolini, G. V, & Mee, R. P. (1997). Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. Journal of Computer- Aided Molecular Design, 11(5), 425–445. https://doi.org/Doi 10.1023/A:1007996124545

  44. Ellingson, S. R., Miao, Y., Baudry, J., & Smith, J. C. (2015). Multiconformer ensemble docking to difficult protein targets. Journal of Physical Chemistry B, 119(3), 1026–1034. https:// doi.org/10.1021/jp506511p

  45. Elokely, K. M., & Doerksen, R. J. (2013). Docking challenge: Protein sampling and molecular docking performance. Journal of Chemical Information and Modeling, 53(8), 1934–1945. https://doi.org/10.1021/ci400040d

  46. Englebienne, P., & Moitessier, N. (2009). Docking ligands into flexible and solvated macromolecules. 5. Force-field-based prediction of binding affinities of ligands to proteins. Journal of Chemical Information and Modeling, 49(11), 2564–2571. https://doi. org/10.1021/ci900251k

  47. Ericksen, S. S., Wu, H., Zhang, H., Michael, L. A., Newton, M. A., Hoffmann, F. M., & Wildman, S. A. (2017). Machine Learning Consensus Scoring Improves Performance Across Targets in Structure-Based Virtual Screening. Journal of Chemical Information and Modeling. https://doi.org/10.1021/acs. jcim.7b00153

  48. Espinoza-Fonseca, L. M., & Trujillo-Ferrara, J. G. (2005). Identification of multiple allosteric sites on the M1 muscarinic acetylcholine receptor. FEBS Letters, 579(30), 6726–6732. https://doi. org/10.1016/j.febslet.2005.10.069

  49. Evangelista, W., Weir, R. L., Ellingson, S. R., Harris, J. B., Kapoor, K., Smith, J. C., & Baudry, J. (2016). Ensemble-based docking: From hit discovery to metabolism and toxicity predictions. Bioorganic and Medicinal Chemistry, 24(20), 4928–4935. https://doi.org/10.1016/j.bmc.2016.07.064

  50. Ezzat, A., Wu, M., Li, X.-L., & Kwoh, C.-K. (2017). Drugtarget interaction prediction using ensemble learning and dimensionality reduction. Methods. 129, 81-88. https://doi. org/10.1016/j.ymeth.2017.05.016

  51. Fakhouri, L., El-Elimat, T., Hurst, D. P., Reggio, P. H., Pearce, C. J., Oberlies, N. H., & Croatt, M. P. (2015). Isolation, semisynthesis, covalent docking and transforming growth factor beta-activated kinase 1 (TAK1)-inhibitory activities of (5Z)-7-oxozeaenol analogues. Bioorganic and Medicinal Chemistry, 23(21), 6993–6999. https://doi.org/10.1016/j.bmc.2015.09.037

  52. Fani, N., Sattarinezhad, E., & Bordbar, A. K. (2017). Identification of new 2,5-diketopiperazine derivatives as simultaneous effective inhibitors of αβ-tubulin and BCRP proteins: Molecular docking, Structure-Activity Relationships and virtual consensus docking studies. Journal of Molecular Structure, 1137, 362–372. https:// doi.org/10.1016/j.molstruc.2017.02.049

  53. Feher, M. (2006). Consensus scoring for protein–ligand interactions. Drug Discovery Today, 11(9). https://doi.org/10.1016/j. drudis.2006.03.009

  54. Feher, M., & Williams, C. I. (2012). Numerical errors and chaotic behavior in docking simulations. Journal of Chemical Information and Modeling, 52(3), 724–738. https://doi. org/10.1021/ci200598m

  55. Feinstein, W. P., & Brylinski, M. (2015). Calculating an optimal box size for ligand docking and virtual screening against experimental and predicted binding pockets. Feinstein and Brylinski Journal of Cheminformatics, 7. https://doi.org/10.1186/s13321-015- 0067-5

  56. Ferrari, A. M., Wei, B. Q., Costantino, L., & Shoichet, B. K. (2004). Soft docking and multiple receptor conformations in virtual screening. Journal of Medicinal Chemistry, 47(21), 5076–5084. https://doi.org/10.1021/jm049756p

  57. Ferreira, L. G., Dos Santos, R. N., Oliva, G., & Andricopulo, A. D. (2015). Molecular docking and structure-based drug design strategies. Molecules (Vol. 20). https://doi.org/10.3390/ molecules200713384

  58. Fischer, B., Merlitz, H., & Wenzel, W. (2008). Receptor flexibility for large-scale in silico ligand screens: Chances and challenges. Methods in Molecular Biology, 443, 353–364. https://doi. org/10.1007/978-1-59745-177-2-18

  59. Forli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S., & Olson, A. J. (2016). Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nature Protocols, 11(5), 905–919. https://doi.org/10.1038/nprot.2016.051

  60. Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., Shenkin, P. S. (2004). Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. https:// doi.org/10.1021/jm0306430

  61. Galdeano, C., & Ciulli, A. (2016). Selectivity on-target of bromodomain chemical probes by structure-guided medicinal chemistry and chemical biology. Future Medicinal Chemistry, 8(13), 1655–1680. https://doi.org/10.4155/fmc-2016-0059

  62. Gervasio, F. L., Laio, A., & Parrinello, M. (2005). Flexible docking in solution using metadynamics. Journal of the American Chemical Society, 127(8), 2600–2607. https://doi.org/10.1021/ ja0445950

  63. Glover, F., & Sörensen, K. (2015). Metaheuristics. Scholarpedia, 10(4), 6532. https://doi.org/10.4249/scholarpedia.6532

  64. González, M. A. (2011). Force fields and molecular dynamics simulations. Collection SFN, 12, 169–200. https://doi. org/10.1051/sfn/201112009

  65. Goodford, P. J. (1985). A Computational Procedure for Determining Energetically Favorable Binding Sites on Biologically Important Macromolecules. Journal of Medicinal Chemistry, 28(7), 849–857. https://doi.org/10.1021/jm00145a002

  66. Grebner, C., Iegre, J., Ulander, J., Edman, K., Hogner, A., & Tyrchan, C. (2016). Binding Mode and Induced Fit Predictions for Prospective Computational Drug Design. Journal of Chemical Information and Modeling, 56(4), 774–787. https://doi. org/10.1021/acs.jcim.5b00744

  67. Grosan, C., & Abraham, A. (2011). Machine Learning. In Intelligent Systems (Vol. 17, pp. 261–268). Springer International Publishing. https://doi.org/10.1007/978-3-642-21004-4_10

  68. Grosdidier, A., Zoete, V., & Michielin, O. (2011). SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Research, 39(SUPPL. 2). https://doi. org/10.1093/nar/gkr366

  69. Grosdidier, S., & Fernández-Recio, J. (2008). Identification of hotspot residues in protein-protein interactions by computational docking. BMC Bioinformatics, 9(1), 447. https://doi. org/10.1186/1471-2105-9-447

  70. Gürsoy, O., & Smieško, M. (2017). Searching for bioactive conformations of drug-like ligands with current force fields: How good are we? Journal of Cheminformatics, 9(1). https:// doi.org/10.1186/s13321-017-0216-0

  71. Guvench, O., & MacKerell, A. D. (2008). Comparison of Protein Force Fields for Molecular Dynamics Simulations. Molecular Modeling of Proteins, 443, 63–88. https://doi.org/10.1007/978- 1-59745-177-2_4

  72. Halperin, I., Ma, B., Wolfson, H., & Nussinov, R. (2002). Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins: Structure, Function and Genetics, 47(4), 409–443. https://doi.org/10.1002/prot.10115

  73. Harris, J. B., Eldridge, M. L., Sayler, G., Menn, F.-M., Layton, A. C., & Baudry, J. (2014). A computational approach predicting CYP450 metabolism and estrogenic activity of an endocrine disrupting compound (PCB-30). Environmental Toxicology and Chemistry, 33(7), 1615–1623. https://doi.org/10.1002/etc.2595

  74. Hostaš, J., Řezáč, J., & Hobza, P. (2013). On the performance of the semiempirical quantum mechanical PM6 and PM7 methods for noncovalent interactions. Chemical Physics Letters, 568–569, 161–166. https://doi.org/10.1016/j.cplett.2013.02.069

  75. Houston, D. R., & Walkinshaw, M. D. (2013). Consensus docking: Improving the reliability of docking in a virtual screening context. Journal of Chemical Information and Modeling, 53(2), 384–390. https://doi.org/10.1021/ci300399w Huang, N., Shoichet, B. K., & Irwin, J. J. (2006). Benchmarking Sets for Molecular Docking. Journal of Medicinal Chemistry, 49(23), 6789–6801. https://doi.org/10.1021/jm0608356

  76. Huang, S.-Y., Grinter, S. Z., & Zou, X. (2010). Scoring functions and their evaluation methods for protein–ligand docking: recent advances and future directions. Physical Chemistry Chemical Physics, 12(40), 12899–12908. https://doi.org/10.1039/ c0cp00151a

  77. Huang, S. Y., & Zou, X. (2007). Ensemble docking of multiple protein structures: Considering protein structural variations in molecular docking. Proteins: Structure, Function and Genetics, 66(2), 399–421. https://doi.org/10.1002/prot.21214

  78. Irwin, J. J., Raushel, F. M., & Shoichet, B. K. (2005). Virtual Screening against Metalloenzymes for Inhibitors and Substrates. Biochemistry, 44(37), 12316–12328. https://doi.org/10.1021/ bi050801k

  79. Ishchenko, A. V, & Shakhnovich, E. I. (2002). SMall Molecule Growth 2001 (SMoG2001): An improved knowledge-based scoring function for protein-ligand interactions. Journal of Medicinal Chemistry, 45(13), 2770–2780. https://doi.org/10.1021/ jm0105833

  80. Jones, G., Willett, P., Glen, R. C., Leach, A. R., & Taylor, R. (1997). Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology, 267(3), 727–748. https://doi.org/10.1006/jmbi.1996.0897

  81. Jorgensen, W. L., & Thomas, L. L. (2008). Perspective on Free-Energy Perturbation Calculations for Chemical Equilibria. Journal of Chemical Theory and Computation, 4(6), 869–876. https://doi. org/10.1021/ct800011m

  82. Kannan, S., & Ganji, R. (2010). Porting Autodock to CUDA. World Congress on Computational Intelligence, 18–23.

  83. Kapoor, K., McGill, N., Peterson, C. B., Meyers, H. V., Blackburn, M. N., & Baudry, J. (2016). Discovery of Novel Nonactive Site Inhibitors of the Prothrombinase Enzyme Complex. Journal of Chemical Information and Modeling, 56(3), 535–547. https:// doi.org/10.1021/acs.jcim.5b00596

  84. Kelley, B. P., Brown, S. P., Warren, G. L., & Muchmore, S. W. (2015). POSIT: Flexible Shape-Guided Docking for Pose Prediction. Journal of Chemical Information and Modeling, 55(8), 1771–1780. https://doi.org/10.1021/acs.jcim.5b00142

  85. Khamis, M. A., Gomaa, W., & Ahmed, W. F. (2015). Machine learning in computational docking. Artificial Intelligence in Medicine. https://doi.org/10.1016/j.artmed.2015.02.002

  86. King, A. M., & Aaron, C. K. (2015, February). Organophosphate and Carbamate Poisoning. Emergency Medicine Clinics of North America. https://doi.org/10.1016/j.emc.2014.09.010

  87. Kitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov, 3(11), 935–949. https:// doi.org/10.1038/nrd1549

  88. Klausmeyer, P., Shipley, S. M., Zuck, K. M., & McCloud, T. G. (2011). Histone deacetylase inhibitors from Burkholderia thailandensis. Journal of Natural Products, 74(10), 2039–2044. https://doi. org/10.1021/np200532d

  89. Knegtel, R. M. ., Kuntz, I. D., & Oshiro, C. (1997). Molecular docking to ensembles of protein structures. Journal of Molecular Biology, 266(2), 424–440. https://doi.org/10.1006/jmbi.1996.0776

  90. Korb, O., Olsson, T. S. G., Bowden, S. J., Hall, R. J., Verdonk, M. L., Liebeschuetz, J. W., & Cole, J. C. (2012). Potential and Limitations of Ensemble Docking. Journal of Chemical Information and Modeling, (52), 1262–1274. https://doi. org/10.1021/ci2005934

  91. Korb, O., Stützle, T., & Exner, T. E. (2009). Empirical scoring functions for advanced Protein-Ligand docking with PLANTS. Journal of Chemical Information and Modeling, 49(1), 84–96. https:// doi.org/10.1021/ci800298z

  92. Kramer, B., Rarey, M., & Lengauer, T. (1999). Evaluation of the FLEXX incremental construction algorithm for protein-ligand docking. Proteins, 37(2), 228–41.

  93. Krieger, E., & Vriend, G. (2015). New ways to boost molecular dynamics simulations. Journal of Computational Chemistry, 36(13), 996–1007. https://doi.org/10.1002/jcc.23899

  94. Kukol, A. (2011). Consensus virtual screening approaches to predict protein ligands. European Journal of Medicinal Chemistry, 46(9), 4661–4664. https://doi.org/10.1016/j. ejmech.2011.05.026

  95. Kumalo, H. M., Bhakat, S., & Soliman, M. E. S. (2015). Theory and applications of covalent docking in drug discovery: Merits and pitfalls. Molecules, 20(2), 1984–2000. https://doi.org/10.3390/ molecules20021984

  96. Kumar, A., & Zhang, K. Y. J. (2013). Investigation on the effect of key water molecules on docking performance in CSARdock exercise. Journal of Chemical Information and Modeling, 53(8), 1880–1892. https://doi.org/10.1021/ci400052w

  97. Kuroda, D., & Gray, J. J. (2016). Pushing the Backbone in Protein- Protein Docking. Structure, 24(10), 1821–1829. https://doi. org/10.1016/j.str.2016.06.025

  98. Lavecchia, A., & Cerchia, C. (2015). In silico methods to address polypharmacology: Current status, applications and future perspectives. Drug Discovery Today. https://doi.org/10.1016/j. drudis.2015.12.007

  99. Lemmon, G., & Meiler, J. (2013). Towards Ligand Docking Including Explicit Interface Water Molecules. PLoS ONE, 8(6), e67536. https://doi.org/10.1371/

  100. Li, A., Sun, H., Du, L., Wu, X., Cao, J., You, Q., & Li, Y. (2014). Discovery of novel covalent proteasome inhibitors through a combination of pharmacophore screening, covalent docking, and molecular dynamics simulations. Journal of Molecular Modeling, 20(11), 2515. https://doi.org/10.1007/s00894-014-2515-y

  101. Lie, M. A., Thomsen, R., Pedersen, C. N. S., Schiøtt, B., & Christensen, M. H. (2011). Molecular docking with ligand attached water molecules. Journal of Chemical Information and Modeling, 51(4), 909–917. https://doi.org/10.1021/ci100510m

  102. Lill, M. A. (2007). Multi-dimensional QSAR in drug discovery. Drug Discovery Today. https://doi.org/10.1016/j.drudis.2007.08.004

  103. London, N., Farelli, J. D., Brown, S. D., Liu, C., Huang, H., Korczynska, M., Al-Obaidi, N. F., Babbitt, P. C., Almo, S. C., Allen, K. N., Shoichet, B. K. (2015). Covalent docking predicts substrates for haloalkanoate dehalogenase superfamily phosphatases. Biochemistry, 54(2), 528–537. https://doi.org/10.1021/ bi501140k

  104. Lopes, P. E. M., Guvench, O., & Mackerell, A. D. (2015). Current status of protein force fields for molecular dynamics simulations. Methods in Molecular Biology, 1215, 47–71. https://doi. org/10.1007/978-1-4939-1465-4_3

  105. López-Camacho, E., García Godoy, M. J., García-Nieto, J., Nebro, A. J., & Aldana-Montes, J. F. (2015). Solving molecular flexible docking problems with metaheuristics: A comparative study. Applied Soft Computing, 28, 379–393. https://doi. org/10.1016/j.asoc.2014.10.049

  106. Madhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8

  107. Marzaro, G., Guiotto, A., Borgatti, M., Finotti, A., Gambari, R., Breveglieri, G., & Chilin, A. (2013). Psoralen derivatives as inhibitors of NF-κB/DNA interaction: Synthesis, molecular modeling, 3D-QSAR, and biological evaluation. Journal of Medicinal Chemistry, 56(5), 1830–1842. https://doi. org/10.1021/jm3009647

  108. Mccall, K. A., Huang, C.-C., & Fierke, C. A. (2000). Zinc and Health: Current Status and Future Directions Function and Mechanism of Zinc Metalloenzymes 1. J. Nutr, 130, 1437–1446.

  109. Mcgann, M. (2011). FRED Pose Prediction and Virtual Screening Accuracy. J. Chem. Inf. Model, 51, 578–596. https://doi. org/10.1021/ci100436p

  110. Medina-Franco, J. L., Giulianotti, M. A., Welmaker, G. S., & Houghten, R. a. (2013). Shifting from the single to the multitarget paradigm in drug discovery. Drug Discovery Today, 18(9–10), 495–501. https://doi.org/10.1016/j.drudis.2013.01.008

  111. Medina-Franco, J. L., Méndez-Lucio, O., & Martinez-Mayorga, K. (2014). The interplay between molecular modeling and chemoinformatics to characterize protein-ligand and proteinprotein interactions landscapes for drug discovery. Advances in Protein Chemistry and Structural Biology, 96, 1–37. https:// doi.org/10.1016/bs.apcsb.2014.06.001

  112. Méndez-Lucio, O., Naveja, J. J., Vite-Caritino, H., Prieto-Martínez, F. D., & Medina-Franco, J. L. (2016). Review. One Drug for Multiple Targets: A Computational Perspective. J. Mex. Chem. Soc., 60(3), 168–181.

  113. Mendonça, E., Barreto, M., Guimarães, V., Santos, N., Pita, S., & Boratto, M. (2017). Accelerating Docking Simulation Using Multicore and GPU Systems. In O. Gervasi, B. Murgante, S. Misra, G. Borruso, C. M. Torre, A. M. A. C. Rocha, … A. Cuzzocrea (Eds.), International Conference on Computational Science and Its Applications (Vol. 10404, pp. 439–451). Cham: Springer International Publishing. https://doi.org/10.1007/978- 3-319-62392-4_32

  114. Meng, X.-Y., Zhang, H.-X., Mezei, M., & Cui, M. (2011). Molecular docking: a powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146–57. https://doi.org/10.2174/157340911795677602

  115. Moitessier, N., Pottel, J., Therrien, E., Englebienne, P., Liu, Z., Tomberg, A., & Corbeil, C. R. (2016). Medicinal Chemistry Projects Requiring Imaginative Structure-Based Drug Design Methods. Accounts of Chemical Research, 49(9), 1646–1657. https://doi.org/10.1021/acs.accounts.6b00185

  116. Monticelli, L., & Tieleman, D. P. (2013). Force fields for classical molecular dynamics. Methods in Molecular Biology (Clifton, N.J.), 924, 197–213. https://doi.org/10.1007/978-1-62703- 017-5_8

  117. Morris, G. M., & Lim-Wilby, M. (2008). Molecular Docking. In Methods in molecular biology (Clifton, N.J.) (Vol. 443, pp. 365–382). https://doi.org/10.1007/978-1-59745-177-2_19

  118. Morris, G. M., Ruth, H., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/ jcc.21256

  119. Motta, S., & Bonati, L. (2017). Modeling Binding with Large Conformational Changes: Key Points in Ensemble-Docking Approaches. Journal of Chemical Information and Modeling, acs.jcim.7b00125. https://doi.org/10.1021/acs.jcim.7b00125

  120. Muegge, I. (2000). A knowledge-based scoring function for proteinligand interactions: Probing the reference state. In Perspectives in Drug Discovery and Design (Vol. 20, pp. 99–114). https:// doi.org/10.1023/A:1008729005958

  121. Murphy, R. B., Repasky, M. P., Greenwood, J. R., Tubert-Brohman, I., Jerome, S., Annabhimoju, R., Boyles, N. A., Schmitz, C. D., Abel, R., Farid, R., Friesner, R. A. (2016). WScore: A Flexible and Accurate Treatment of Explicit Water Molecules in Ligand- Receptor Docking. Journal of Medicinal Chemistry, 59(9), 4364–4384. https://doi.org/10.1021/acs.jmedchem.6b00131

  122. Murray, C. W., Auton, T. R., & Eldridge, M. D. (1998). Empirical scoring functions. II. The testing of an empirical scoring function for the prediction of ligand-receptor binding affinities and the use of Bayesian regression to improve the quality of the model. Journal of Computer-Aided Molecular Design, 12(5), 503–19.

  123. Nabuurs, S. B., Wagener, M., & De Vlieg, J. (2007). A flexible approach to induced fit docking. Journal of Medicinal Chemistry, 50(26), 6507–6518. https://doi.org/10.1021/jm070593p

  124. Neves, M. A. C., Totrov, M., & Abagyan, R. (2012). Docking and scoring with ICM: The benchmarking results and strategies for improvement. Journal of Computer-Aided Molecular Design, 26(6), 675–686. https://doi.org/10.1007/s10822-012-9547-0

  125. Nikitina, E., Sulimov, V., Zayets, V., & Zaitseva, N. (2004). Semiempirical Calculations of Binding Enthalpy for Protein- Ligand Complexes. International Journal of Quantum Chemistry, 97(2), 747–763. https://doi.org/10.1002/qua.10778

  126. Oferkin, I. V., Katkova, E. V., Sulimov, A. V., Kutov, D. C., Sobolev, S. I., Voevodin, V. V., & Sulimov, V. B. (2015). Evaluation of Docking Target Functions by the Comprehensive Investigation of Protein-Ligand Energy Minima. Advances in Bioinformatics, 2015, 1–12. https://doi.org/10.1155/2015/126858

  127. Ohno, K., Kamiya, N., Asakawa, N., Inoue, Y., & Sakurai, M. (2001). Application of an integrated MOZYME+DFT method to pKa calculations for proteins. Chemical Physics Letters, 341(3–4), 387–392. https://doi.org/10.1016/S0009-2614(01)00499-7

  128. Onawole, A. T., Sulaiman, K. O., Adegoke, R. O., & Kolapo, T. U. (2017). Identification of potential inhibitors against the Zika virus using consensus scoring. Journal of Molecular Graphics and Modelling, 73, 54–61. https://doi.org/10.1016/j. jmgm.2017.01.018

  129. Parikh, H. I., & Kellogg, G. E. (2014). Intuitive, but not simple: Including explicit water molecules in protein-protein docking simulations improves model quality. Proteins: Structure, Function and Bioinformatics, 82(6), 916–932. https://doi. org/10.1002/prot.24466

  130. Park, S. J., Kufareva, I., & Abagyan, R. (2010). Improved docking, screening and selectivity prediction for small molecule nuclear receptor modulators using conformational ensembles. Journal of Computer-Aided Molecular Design, 24(5), 459–471. https:// doi.org/10.1007/s10822-010-9362-4

  131. Pason, L. P., & Sotriffer, C. A. (2016). Empirical Scoring Functions for Affinity Prediction of Protein-ligand Complexes. Molecular Informatics, 35(11–12), 541–548. https://doi.org/10.1002/ minf.201600048

  132. Paul, D. S., & Gautham, N. (2017). iMOLSDOCK: Induced-fit docking using mutually orthogonal Latin squares (MOLS). Journal of Molecular Graphics and Modelling, 74, 89–99. https://doi. org/10.1016/j.jmgm.2017.03.008

  133. Pedretti, A., Villa, L., & Vistoli, G. (2004). VEGA - An open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming. Journal of Computer- Aided Molecular Design, 18(3), 167–173. https://doi. org/10.1023/B:JCAM.0000035186.90683.f2

  134. Perola, E., Walters, W. P., & Charifson, P. S. (2004). A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance. Proteins: Structure, Function and Genetics, 56(2), 235–249. https://doi.org/10.1002/prot.20088

  135. Plewczynski, D., Łażniewski, M., Grotthuss, M. Von, Rychlewski, L., & Ginalski, K. (2011). VoteDock: Consensus docking method for prediction of protein-ligand interactions. Journal of Computational Chemistry, 32(4), 568–581. https://doi. org/10.1002/jcc.21642

  136. Prieto-Martínez, F. D., & Medina-Franco, J. L. (2018). Charting the Bromodomain BRD4: Towards the Identification of Novel Inhibitors with Molecular Similarity and Receptor Mapping. Letters in Drug Design & Discovery, 14. https://doi.org/10.2 174/1570180814666171121145731

  137. Ramírez, D., & Caballero, J. (2016). Is it reliable to use common molecular docking methods for comparing the binding affinities of enantiomer pairs for their protein target? International Journal of Molecular Sciences, 17(4), 1–15. https://doi. org/10.3390/ijms17040525

  138. Ran, T., Zhang, Z., Liu, K., Lu, Y., Li, H., Xu, J., Xiong, X., Zhang, Y., Xu, A., Lu, S., Liu, H., Lu, T., Chen, Y. (2015). Insight into the key interactions of bromodomain inhibitors based on molecular docking, interaction fingerprinting, molecular dynamics and binding free energy calculation. Molecular bioSystems, 11(5), 1295–1304. https://doi.org/10.1039/c4mb00723a

  139. Roberts, B. C., & Mancera, R. L. (2008). Ligand-protein docking with water molecules. Journal of Chemical Information and Modeling, 48(2), 397–408. https://doi.org/10.1021/ci700285e

  140. Ross, G. A., Morris, G. M., & Biggin, P. C. (2012). Rapid and accurate prediction and scoring of water molecules in protein binding sites. PLoS ONE, 7(3), e32036. https://doi.org/10.1371/journal. pone.0032036

  141. Ruiz-Carmona, S., Alvarez-Garcia, D., Foloppe, N., Garmendia- Doval, A. B., Juhos, S., Schmidtke, P., Barril, X., Hubbard, R. E., Morley, S. D. (2014). rDock: A Fast, Versatile and Open Source Program for Docking Ligands to Proteins and Nucleic Acids. PLoS Computational Biology, 10(4). e100357. https:// doi.org/10.1371/journal.pcbi.1003571

  142. Sacquin-Mora, S., & Prévost, C. (2015). Docking Peptides on Proteins: How to open a lock, in the dark, with a flexible key. Structure, 23(8), 1373–1374. https://doi.org/10.1016/j.str.2015.07.004

  143. Saldívar-González, F. I., Prieto-Martínez, F. D., & Medina-Franco, J. L. (2017). Descubrimiento y desarrollo de fármacos: un enfoque computacional. Educación Química, 28(1), 51–58. https://doi.org/10.1016/j.eq.2016.06.002

  144. Samanta, P. N., & Das, K. K. (2017). Inhibition activities of catechol diether based non-nucleoside inhibitors against the HIV reverse transcriptase variants: Insights from molecular docking and ONIOM calculations. Journal of Molecular Graphics and Modelling, 75, 294–305. https://doi.org/10.1016/j. jmgm.2017.06.011

  145. Santos-Martins, D., Forli, S., Ramos, M. J., & Olson, A. J. (2014). AutoDock4 Zn : An Improved AutoDock Force Field for Small-Molecule Docking to Zinc Metalloproteins. Journal of Chemical Information and Modeling, 54(8), 2371–2379. https://doi.org/10.1021/ci500209e

  146. Scholz, C., Knorr, S., Hamacher, K., & Schmidt, B. (2015). DOCKTITE-A highly versatile step-by-step workflow for covalent docking and virtual screening in the molecular operating environment. Journal of Chemical Information and Modeling, 55(2), 398–406. https://doi.org/10.1021/ci500681r

  147. Schröder, J., Klinger, A., Oellien, F., Marhöfer, R. J., Duszenko, M., & Selzer, P. M. (2013). Docking-based virtual screening of covalently binding ligands: An orthogonal lead discovery approach. Journal of Medicinal Chemistry, 56(4), 1478–1490. https://doi.org/10.1021/jm3013932

  148. Senter, P. D., & Sievers, E. L. (2012). The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Nature Biotechnology, 30(7), 631–637. https://doi.org/10.1038/ nbt.2289

  149. Sheng, Y., Chen, Y., Wang, L., Liu, G., Li, W., & Tang, Y. (2014). Effects of protein flexibility on the site of metabolism prediction for CYP2A6 substrates. Journal of Molecular Graphics and Modelling, 54, 90–99. https://doi.org/10.1016/j. jmgm.2014.09.005

  150. Sørensen, J., Demir, Ö., Swift, R. V, Feher, V. A., & Amaro, R. E. (2014). Molecular docking to flexible targets. In Molecular Modeling of Proteins: Second Edition (Vol. 1215, pp. 445–469). https://doi.org/10.1007/978-1-4939-1465-4_20

  151. Spitzer, R., & Jain, A. N. (2012). Surflex-Dock: Docking benchmarks and real-world application. Journal of Computer-Aided Molecular Design, 26(6), 687–699. https://doi.org/10.1007/ s10822-011-9533-y

  152. Sridhar, A., Ross, G. A., Biggin, P. C., Ward, S., Pardo, L., & Mortenson, P. (2017). Waterdock 2.0: Water placement prediction for Holostructures with a pymol plugin. PLOS ONE, 12(2), e0172743. https://doi.org/10.1371/journal.pone.0172743

  153. Stank, A., Kokh, D. B., Fuller, J. C., & Wade, R. C. (2016). Protein Binding Pocket Dynamics. Accounts of Chemical Research, 49(5), 809–815. https://doi.org/10.1021/acs.accounts.5b00516

  154. Stewart, J. J. P. (2008). Application of the PM6 method to modeling the solid state. Journal of Molecular Modeling, 14(6), 499–535. https://doi.org/10.1007/s00894-008-0299-7

  155. Sulimov, A. V., Kutov, D. C., Katkova, E. V., Ilin, I. S., & Sulimov, V. B. (2017). New generation of docking programs: Supercomputer validation of force fields and quantum-chemical methods for docking. Journal of Molecular Graphics and Modelling, 78, 139–147. https://doi.org/10.1016/j.jmgm.2017.10.007

  156. Toledo Warshaviak, D., Golan, G., Borrelli, K. W., Zhu, K., & Kalid, O. (2014). Structure-based virtual screening approach for discovery of covalently bound ligands. Journal of Chemical Information and Modeling, 54(7), 1941–1950. https://doi. org/10.1021/ci500175r

  157. Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), NA-NA. https://doi.org/10.1002/jcc.21334

  158. Tuccinardi, T., Poli, G., Romboli, V., Giordano, A., & Martinelli, A. (2014). Extensive consensus docking evaluation for ligand pose prediction and virtual screening studies. Journal of Chemical Information and Modeling, 54(10), 2980–2986. https://doi. org/10.1021/ci500424n

  159. Uehara, S., & Tanaka, S. (2016). AutoDock-GIST: Incorporating thermodynamics of active-site water into scoring function for accurate protein-ligand docking. Molecules, 21(11). https:// doi.org/10.3390/molecules21111604

  160. Uehara, S., & Tanaka, S. (2017). Cosolvent-Based Molecular Dynamics for Ensemble Docking: Practical Method for Generating Druggable Protein Conformations. Journal of Chemical Information and Modeling, 57(4), 742–756. https://doi. org/10.1021/acs.jcim.6b00791

  161. Unzue, A., Zhao, H., Lolli, G., Dong, J., Zhu, J., Zechner, M., Dolbois, A., Caflisch, A., Nevado, C. (2016). The “gatekeeper” Residue Influences the Mode of Binding of Acetyl Indoles to Bromodomains. Journal of Medicinal Chemistry, 59(7), 3087–3097. https://doi.org/10.1021/acs.jmedchem.5b01757

  162. Vahl Quevedo, C., De Paris, R., D. Ruiz, D., & Norberto De Souza, O. (2014). A strategic solution to optimize molecular docking simulations using Fully-Flexible Receptor models. Expert Systems with Applications, 41(16), 7608–7620. https://doi. org/10.1016/j.eswa.2014.05.038

  163. Vakser, I. A. (2014). Protein-protein docking: From interaction to interactome. Biophysical Journal, 107(8), 1785–1793. https:// doi.org/10.1016/j.bpj.2014.08.033

  164. VanderMolen, K. M., McCulloch, W., Pearce, C. J., & Oberlies, N. H. (2011). Romidepsin (Istodax, NSC 630176, FR901228, FK228, depsipeptide): a natural product recently approved for cutaneous T-cell lymphoma. The Journal of Antibiotics, 64(8), 525–31. https://doi.org/10.1038/ja.2011.35

  165. Venkatachalam, C. M., Jiang, X., Oldfield, T., & Waldman, M. (2003). LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. Journal of Molecular Graphics and Modelling, 21(4), 289–307. https://doi.org/10.1016/S1093- 3263(02)00164-X

  166. Verdonk, M. L., Taylor, R. D., Chessari, G., & Murray, C. W. (2007). Illustration of Current Challenges in Molecular Docking. In Structure-Based Drug Discovery (pp. 201–221). Dordrecht: Springer Netherlands. https://doi.org/10.1007/1-4020-4407-0_8

  167. Vilar, S., & Costanzi, S. (2013). Application of Monte Carlo-based receptor ensemble docking to virtual screening for GPCR ligands. Methods in Enzymology, 522, 263–278. https://doi. org/10.1016/B978-0-12-407865-9.00014-5

  168. Vilar, S., Cozza, G., & Moro, S. (2008). Medicinal Chemistry and the Molecular Operating Environment (MOE): Application of QSAR and Molecular Docking to Drug Discovery. Current Topics in Medicinal Chemistry, 8(18), 1555–1572. https://doi. org/10.2174/156802608786786624

  169. Vreven, T., Moal, I. H., Vangone, A., Pierce, B. G., Kastritis, P. L., Torchala, M., Chaleil, R., Jiménez-García, B., Bates, P. A., Fernandez-Recio, J., Bonvin, A. M. M. J. J., Weng, Z. (2015). Updates to the Integrated Protein-Protein Interaction Benchmarks: Docking Benchmark Version 5 and Affinity Benchmark Version 2. Journal of Molecular Biology, 427(19), 3031–3041. https://doi.org/10.1016/j.jmb.2015.07.016

  170. Wada, M., & Sakurai, M. (2005). A quantum chemical method for rapid optimization of protein structures. Journal of Computational Chemistry, 26(2), 160–168. https://doi.org/10.1002/jcc.20154

  171. Wagener, M., Ve Vlieg, J., & Nabuurs, S. B. (2012). Flexible protein-ligand docking using the fleksy protocol. Journal of Computational Chemistry, 33(12), 1215–1217. https://doi. org/10.1002/jcc.22948

  172. Wang, C., Bradley, P., & Baker, D. (2007). Protein-Protein Docking with Backbone Flexibility. Journal of Molecular Biology, 373(2), 503–519. https://doi.org/10.1016/j.jmb.2007.07.050

  173. Wang, R., Lu, Y., & Wang, S. (2003). Comparative evaluation of 11 scoring functions for molecular docking. Journal of Medicinal Chemistry, 46(12), 2287–2303. https://doi.org/10.1021/ jm0203783

  174. Wang, R., & Wang, S. (2001). How does consensus scoring work for virtual library screening? An idealized computer experiment. Journal of Chemical Information and Computer Sciences, 41(5), 1422–1426. https://doi.org/10.1021/ci010025x

  175. Wang, Z., Sun, H., Yao, X., Li, D., Xu, L., Li, Y., Xu, L., Li., Y., Tian, S., Hou, T. (2016). Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power. Physical Chemistry Chemical Physics : PCCP, 18, 12964– 12975. https://doi.org/10.1039/c6cp01555g

  176. Warren, G. L., Do, T. D., Kelley, B. P., Nicholls, A., & Warren, S. D. (2012). Essential considerations for using protein-ligand structures in drug discovery. Drug Discovery Today, 17(23–24), 1270–1281. https://doi.org/10.1016/j.drudis.2012.06.011

  177. Waszkowycz, B., Clark, D. E., & Gancia, E. (2011). Outstanding challenges in protein-ligand docking and structurebased virtual screening. Wiley Interdisciplinary Reviews: Computational Molecular Science, 1(2), 229–259. https:// doi.org/10.1002/wcms.18

  178. Xu, M., & Lill, M. A. (2013). Induced fit docking, and the use of QM/ MM methods in docking. Drug Discovery Today: Technologies. https://doi.org/10.1016/j.ddtec.2013.02.003

  179. Yan, C., Xu, X., & Zou, X. (2016). Fully Blind Docking at the Atomic Level for Protein-Peptide Complex Structure Prediction. Structure, 24(10), 1842–1853. https://doi.org/10.1016/j. str.2016.07.021

  180. Yang, H., Zhou, Q., Li, B., Wang, Y., Luan, Z., Qian, D., & Li, H. (2010). GPU Acceleration of Dock6’s Amber Scoring Computation. In Advances in experimental medicine and biology (Vol. 680, pp. 497–511). Springer International Publishing. https://doi. org/10.1007/978-1-4419-5913-3_56 Yang, J. M., & Chen, C. C. (2004). GEMDOCK: A Generic Evolutionary Method for Molecular Docking. Proteins: Structure, Function and Genetics, 55(2), 288–304. https://doi.org/10.1002/ prot.20035

  181. Zhao, H., Gartenmann, L., Dong, J., Spiliotopoulos, D., & Caflisch, A. (2014). Discovery of BRD4 bromodomain inhibitors by fragment-based high-throughput docking. Bioorganic and Medicinal Chemistry Letters, 24(11), 2493–2496. https://doi. org/10.1016/j.bmcl.2014.04.017

  182. Zoete, V., Cuendet, M. A., Grosdidier, A., & Michielin, O. (2011). SwissParam: A fast force field generation tool for small organic molecules. Journal of Computational Chemistry, 32(11), 2359–2368. https://doi.org/10.1002/jcc.21816

  183. Zou, K. H., O’Malley, A. J., & Mauri, L. (2007). Receiver-Operating Characteristic Analysis for Evaluating Diagnostic Tests and Predictive Models. Circulation, 115(5), 654.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2018;21

ARTíCULOS SIMILARES

CARGANDO ...