Entrar/Registro  
INICIO ENGLISH
 
Gaceta Médica de México
   
MENÚ

Contenido por año, Vol. y Num.

Índice de este artículo

Información General

Instrucciones para Autores

Mensajes al Editor

Directorio






>Revistas >Gaceta Médica de México >Año 2019, No. 2


Ventura-Arizmendi E, Hernández-Valencia M
La esteroidogénesis en el síndrome de ovarios poliquísticos
Gac Med Mex 2019; 155 (2)

Idioma: Español
Referencias bibliográficas: 32
Paginas: 184-190
Archivo PDF: 220.24 Kb.


Texto completo




RESUMEN

El síndrome de ovarios poliquísticos es la enfermedad endocrina más frecuente en la edad reproductiva; se caracteriza por alteraciones menstruales, hiperandrogenismo clínico o bioquímico e identificación ultrasonográfica de quistes ováricos. Las alteraciones neuroendocrinas y metabólicas que lo acompañan implican desensibilización del eje hipotálamo-hipófisis-ovario, esteroidogénesis e hiperandrogenismo. Recientemente se ha explorado el papel de la resistencia a la insulina. Se ha establecido que la principal causa del síndrome de ovarios poliquísticos es el hiperandrogenismo, debido a alteraciones enzimáticas en la vía esteroidogénica, por lo que existe sobreestimulación por parte de la hormona luteinizante a causa de los pulsos rápidos generados por la hormona liberadora de gonadotropinas. Diversos factores de crecimiento y citocinas inhiben la conversión de andrógenos a estrógenos. En la desregulación característica de este síndrome también están involucradas la activina y las prostaglandinas e, incluso, altos niveles de insulina.


Palabras clave: Síndrome de ovarios poliquísticos, Esteroidogénesis, Hiperandrogenismo, Aromatización.


REFERENCIAS

  1. Sirmans SM, Pate KA. Epidemiology, diagnosis, and management of polycystic ovary syndrome. Clin Epidemiol. 2014;6:1-13.

  2. Terasawa E, Fernandez DL. Neurobiological mechanisms of the onset of puberty in primates. Endocr Rev. 2001;1:111-151.

  3. Besser GM, McNeilly AS, Anderson DC, Marshall JC, Harsoulis P, Hall R, et al. Hormonal responses to synthetic luteinizing hormone and follicle stimulating hormone-releasing hormone in man. Br Med J. 1972; 3:267-271.

  4. Ciccone NA, Kaiser UB. The biology of gonadotroph regulation. Curr Opin Endocrinol Diabetes Obes. 2009;16:321-327

  5. Roe AH, Dokras A. The diagnosis of polycystic ovary syndrome in adolescents. Rev Obstet Gynecol. 2011;4:45-51

  6. Liu C, Peng J, Matzuk MM, Yao HH. Lineage specification of ovarian theca cells requires multicellular interactions via oocyte and granulosa cells. Nat Commun. 2015;6:6934-6955.

  7. Baptiste CG, Battista MC, Trottier A, Baillargeon JP. Insulin and hyperandrogenism in women with polycystic ovary syndrome. J Steroid Biochem Mol Biol. 2010;122:42-52.

  8. Baskind NE, Balen AH. Hypothalamic-pituitary, ovarian and adrenal contributions to polycystic ovary syndrome. Best Pract Res Clin Obstet Gynaecol. 2016;37 80-97.

  9. Gianetti E, Seminara S. Kisspeptin and KISS1R: a critical pathway in the reproductive system. Reproduction. 2008;136 295-301.

  10. Oride A, Kanasaki H, Mijiddorj T, Sukhbaatar U, Ishihara T, Kyo S. Regulation of kisspeptin and gonadotropin releasing hormone expression in rat placenta: study using primary cultures of rat placental cells. Reprod Biol Endocrinol 2015;13:90-98.

  11. Ezzat A, Pereira A, Clarke IJ. Kisspeptin is a component of the pulse generator for GnRH secretion in female sheep but not the pulse generator. Endocrinology. 2015;156:1828-1837.

  12. Hanchate NK, Parkash J, Bellefontaine N, Mazur D, Colledge WH, D’Anglemont- De-Tassigny X, et al. Kisspeptin-GPR54 signaling in mouse NO-synthesizing neurons participates in the hypothalamic control of ovulation. J Neurosci. 2012;32 932-945.

  13. Donoso AO, López FJ, Negro-Vilar A. Cross-talk between excitatory and inhibitory amino acids in the regulation of luteinizing hormone-releasing hormone secretion. Endocrinology. 1992;131:1559-1561.

  14. Gougeon A. Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev. 1996;17:121-155.

  15. Balen AH, Conway GS, Homburg R, Legro RS. Polycystic ovary syndrome. A guide to clinical management. EE. UU.: Taylor & Francis; 2005.

  16. Rosenfield RL, Ehrmann DA. The pathogenesis of polycystic ovary syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr Rev. 2016;37:467-520.

  17. Barbieri RL. The endocrinology of the menstrual cycle. En: Rosenwaks Z, Wassarman PM, editores. Human Fertility. Methods and Protocols. EE. UU.: Humana Press; 2014.

  18. Otsuka F, McTavish K, Shimasaki S. Integral role of GDF-9 and BMP-15 in ovarian function. Mol Reprod Dev. 2011;78 9-21.

  19. Rosenfield RL, Barnes RB, Cara JF, Lucky AW. Dysregulation of cytochrome P450c17 alpha as the cause of polycystic ovarian syndrome. Fertil Steril. 1990;53:785-791.

  20. White D, Leigh A, Wilson C, Donaldson A, Franks S. Gonadotrophin and gonadal steroid response to a single dose of a long-acting agonist of gonadotrophin-releasing hormone in ovulatory and anovulatory women with polycystic ovary syndrome. Clin Endocrinol (Oxf). 1995;42:475-481.

  21. Taylor AE, McCourt B, Martin K, Anderson EJ, Adams J, Schoebfeld D, et al. Determinants of abnormal gonadotropin secretion in clinically defined women with polycystic ovary syndrome. J Clin Endocrinol Metab. 1997;82:2248-2256.

  22. Barontini M, García-Rudaz M, Veldhius JD. Mechanisms of hypothalamic- pituitary-gonadal disruption in polycystic ovarian syndrome. Arch Med Res. 2001;32:544-552.

  23. Hirshfeld-Cytron J, Barnes RB, Ehrmann DA, Caruso A, Mortensen MM, Rosenfield RL. Characterization of functionally typical and atypical types of polycystic ovary syndrome. J Clin Endocrinol Metab. 2009;94:1587-1594.

  24. Mason HD, Willis DS, Beard RW, Winston RM, Margara R, Frank S. Estradiol production by granulosa cells of normal and polycystic ovaries: relationship to menstrual cycle history and to concentrations of gonadotrophins and sex steroids in follicular fluid. J Clin Endocrinol Metab. 1994;79:1355-1360.

  25. Rosenfield RL, Mortensen M, Wroblewski K, Littlejohn E, Ehrmann DA. Determination of the source of androgen excess in functionally atypical polycystic ovary syndrome by a short dexamethasone androgensuppression test and a low-dose ACTH test. Hum Reprod. 2011;26: 3138-3146.

  26. Dumesic DA, Oberfield SE, Stener-Victorin E, Marshall JC, Laven JS, Legro RS. Scientific statement on the diagnostic criteria, epidemiology, pathophysiology, and molecular genetics of polycystic ovary syndrome. Endocr Rev. 2015,36:487-525.

  27. Kazer RR, Kessel B, Yen SS. Circulating luteinizing hormone pulse frequency in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 1987;65:233-236.

  28. Qiao J, Feng HL. Extra-and intra-ovarian factors in polycystic ovary syndrome: impact on oocyte maturation and embryo developmental competence. Hum Reprod Update. 2011;17:17-33.

  29. RefSeq: NCBI Reference Sequence Database [Sitio web]. EEUU: National Center for Biothechnology Information/National Library of Medicine; 2008.

  30. Peng HM, Im SC, Pearl NM, Turcu AF, Rege J, Waskell L, et al. Cytochrome b5 activates the 17,20-lyase activity of human cytochrome P450 17A1 by increasing the coupling of NADPH consumption to androgen production. Biochemistry. 2016;55:4356-4365.

  31. Balen, A. The pathophysiology of polycystic ovary syndrome: trying to understand PCOS and its endocrinology. Best Pract Res Clin Obstet Gynaecol. 2004;18 685-706.

  32. Dunaif A. Insulin resistance and the polycystic ovary syndrome: mechanisms and implication for pathogenesis. Endocr Rev. 1997;18:774-800.



>Revistas >Gaceta Médica de México >Año2019, No. 2
 

· Indice de Publicaciones 
· ligas de Interes 






       
Derechos Resevados 2019