medigraphic.com
ENGLISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Digital)
ISSN 1405-888X (Impreso)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2019, Número 1

<< Anterior Siguiente >>

TIP Rev Esp Cienc Quim Biol 2019; 22 (1)


Bioaccesibilidad y cinética de liberación in vitro de compuestos fenólicos en pulpas de guayaba (Psidium guajava L.) y guanábana (Annona muricata L.)

Blancas-Benítez FJ, Montalvo-González E, González-Aguilar GA, Sáyago-Ayerdi SG
Texto completo Cómo citar este artículo Artículos similares

Idioma: Ingles.
Referencias bibliográficas: 30
Paginas: 1-7
Archivo PDF: 509.76 Kb.


PALABRAS CLAVE

bioaccesibilidad, digestión in vitro, polifenoles, Psidium guajava L., Annona muricata L.

RESUMEN

Las frutas tropicales son conocidas como saludables, la guayaba y guanábana, se consideran ricos en compuestos fenólicos (CF), y generalmente se consumen frescos o en pulpa. El efecto beneficioso atribuido al consumo de frutas se relaciona con la cantidad de CF que pueden ser bioaccesibles en el organismo. El objetivo de este estudio fue evaluar la bioaccesibilidad de los CF de las pulpas de guayaba y guanábana. Durante el proceso de digestión in vitro, se observó que la liberación más alta se produjo durante la etapa intestinal, esto podría deberse a la liberación parcial de los CF asociada con el material de la pared celular de las pulpas. Los valores de bioaccesibilidad de los CF fueron 79.93% para guayaba y 83.91% para guanábana, los ácidos gálico y clorogénico fueron detectados como los principales CF presentes en ambas muestras, aunque el ácido cafeico fue detectado solo en la pulpa de guanábana, por su parte, la cinética de liberación de los CF en las pulpas mostraron una tasa de liberación similar en ambas muestras, lo que indica que una gran parte de los CF presentes en estas pulpas son potencialmente bioaccesibles y pueden estar disponibles para absorberse en el intestino delgado.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Abderrahim, F., Huanatico, E., Segura, R., Arribas, S., Gonzalez, M. C. & Condezo-Hoyos, L. (2015). Physical features, phenolic compounds, betalains and total antioxidant capacity of coloured quinoa seeds (Chenopodium quinoa Willd.) from Peruvian Altiplano. Food chemistry, 183, 83-90.

  2. Ajila, C. & Prasada Rao, U. (2013). Mango peel dietary fibre: Composition and associated bound phenolics. Journal of Functional Foods. 5(1), 444-450.

  3. Álvarez-Parrilla, E., de la Rosa, L. A., Amarowicz, R. & Shahidi, F. (2010). Antioxidant activity of fresh and processed Jalapeno and Serrano peppers. Journal of Agricultural and food Chemistry, 59(1), 163-173.

  4. Benzie, I. F. & Strain, J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical biochemistry, 239(1), 70-76.

  5. Blancas-Benítez, F. J., Pérez-Jiménez, J., Montalvo-González, E., González-Aguilar, G. A. & Sáyago-Ayerdi, S. G. (2018). In vitro evaluation of the kinetics of the release of phenolic compounds from guava (Psidium guajava L.) fruit. Journal of Functional Foods, 43, 139–145.

  6. Blancas-Benitez, F. J., de Jesús Avena-Bustillos, R., Montalvo- González, E., Sáyago-Ayerdi, S. G. & McHugh, T. H. (2015a). Addition of dried ‘Ataulfo’mango (Mangifera indica L.) by-products as a source of dietary fiber and polyphenols in starch molded mango snacks. Journal of Food Science and Technology, 52(11), 7393-7400.

  7. Blancas-Benítez, F. J., Mercado-Mercado, G., Quirós- Sauceda, A. E., Montalvo-González, E., González- Aguilar, G. A. & Sáyago-Ayerdi, S. G. (2015b). Bioaccessibility of polyphenols associated with dietary fiber and in vitro kinetics release of polyphenols in Mexican ‘Ataulfo’mango (Mangifera indica L.) byproducts. Food & function, 6(3), 859-868.

  8. Bohn, T. (2014). Dietary factors affecting polyphenol bioavailability. Nutrition Reviews, 72(7), 429-452.

  9. Chandrasekara, A. & Shahidi, F. (2012). Bioaccessibility and antioxidant potential of millet grain phenolics as affected by simulated in vitro digestion and microbial fermentation. Journal of Functional Foods, 4(1), 226-237.

  10. Coria-Téllez, A. V., Montalvo-Gónzalez, E., Yahia, E. M. & Obledo-Vázquez, E. N. (2018). Annona muricata: A comprehensive review on its traditional medicinal uses, phytochemicals, pharmacological activities, mechanisms of action and toxicity. Arabian Journal of Chemistry. 11(5), 662-691.

  11. Cuervo, A., Valdés, L., Salazar, N., de los Reyes-Gavilán, C. G., Ruas-Madiedo, P., Gueimonde, M. & González, S. (2014). Pilot Study of Diet and Microbiota: Interactive Associations of Fibers and Polyphenols with Human Intestinal Bacteria. Journal of Agricultural and Food Chemistry, 62(23), 5330-5336. DOI:10.1021/jf501546a

  12. Espín, J. C., García-Conesa, M. T. & Tomás-Barberán, F. A. (2007). Nutraceuticals: facts and fiction. Phytochemistry, 68(22), 2986-3008.

  13. González-Aguilar, G. A., Blancas-Benítez, F. J. & Sáyago- Ayerdi, S. G. (2017). Polyphenols associated with dietary fibers in plant foods: Molecular interactions and bioaccessibility. Current Opinion in Food Science, 13, 84-88.

  14. Jiménez-Escrig, A., Rincón, M., Pulido, R. & Saura-Calixto, F. (2001). Guava fruit (Psidium guajava L.) as a new source of antioxidant dietary fiber. Journal of Agricultural and food Chemistry, 49(11), 5489-5493.

  15. Kristl, J., Slekovec, M., Tojnko, S. & Unuk, T. (2011). Extractable antioxidants and non-extractable phenolics in the total antioxidant activity of selected plum cultivars (Prunus domestica L.): Evolution during on-tree ripening. Food chemistry, 125(1), 29-34.

  16. Liu, R. H. (2003). Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. The American journal of clinical nutrition, 78(3), 517S-520S.

  17. Montreau, F. (1972). Sur le dosage des composés phénoliques totaux dans les vins par la methode Folin-Ciocalteau. Connaiss Vigne Vin, 24, 397-404.

  18. Onyechi, U., Ibeanu, U., Nkiruka, V., Eme, E. & Madubike, K. (2012). Nutrient phytochemical composition and sensory evaluation of soursop (Annona muricata) pulp and drink in South Eastern Nigeria. Int. J. Basic Appl. Sci., 12, 53-57.

  19. Pérez-Beltrán, Y. E., Becerra-Verdín, E. M., Sáyago- Ayerdi, S. G., Rocha-Guzmán, N. E., García-López, E. G., Castañeda-Martínez, A. & Montalvo-González, E. (2017). Nutritional characteristics and bioactive compound content of guava purees and their effect on biochemical markers of hyperglycemic and hypercholesterolemic rats. Journal of Functional Foods, 35, 447-457.

  20. Pérez-Jiménez, J., Arranz, S., Tabernero, M., Díaz-Rubio, M. E., Serrano, J., Goñi, I. & Saura-Calixto, F. (2008). Updated methodology to determine antioxidant capacity in plant foods, oils and beverages: Extraction, measurement and expression of results. Food Research International, 41(3), 274-285.

  21. Rui C. Pimpão Tristan Dew Maria E. Figueira Gordon J. McDougall Derek Stewart Ricardo B. Ferreira Claudia N. Santos Gary Williamson (2014). Urinary metabolite profiling identifies novel colonic metabolites and conjugates of phenolics in healthy volunteers. Molecular Nutrition & Food Research, 58(7), 1414-1425. DOI:10.1002/mnfr.201300822

  22. Quirós-Sauceda, A., Palafox-Carlos, H., Sáyago-Ayerdi, S., Ayala-Zavala, J., Bello-P érez, L., Álvarez-Parrilla, E. & González-Aguilar, G. (2014). Dietary fiber and phenolic compounds as functional ingredients: interaction and possible effect after ingestion. Food & function, 5(6), 1063-1072.

  23. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9), 1231-1237.

  24. Rein, M. J., Renouf, M., Cruz-Hernández, C., Actis- Goretta, L., Thakkar, S. K. & da Silva Pinto, M. (2013). Bioavailability of bioactive food compounds: a challenging journey to bioefficacy. British journal of clinical pharmacology, 75(3), 588-602.

  25. Rojas-Garbanzo, C., Zimmermann, B. F., Schulze-Kaysers, N. & Schieber, A. (2017). Characterization of phenolic and other polar compounds in peel and flesh of pink guava (Psidium guajava L. cv.‘Criolla’) by ultra-high performance liquid chromatography with diode array and mass spectrometric detection. Food Research International, 100, 445-453.

  26. Saura-Calixto, F., García-Alonso, A., Goñi, I. & Bravo, L. (2000). In vitro determination of the indigestible fraction in foods: an alternative to dietary fiber analysis. Journal of Agricultural and food Chemistry, 48(8), 3342-3347.

  27. Saura-Calixto, F. (2010). Dietary fiber as a carrier of dietary antioxidants: an essential physiological function. Journal of agricultural and food chemistry, 59(1), 43-49.

  28. Soares, F. D., Pereira, T., Marques, M. O. M. & Monteiro, A. R. (2007). Volatile and non-volatile chemical composition of the white guava fruit (Psidium guajava) at different stages of maturity. Food chemistry, 100(1), 15-21.

  29. Tang, Y., Li, X., Zhang, B., Chen, P. X., Liu, R. & Tsao, R. (2015). Characterization of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food chemistry, 166, 380-388.

  30. Vetrani, C., Rivellese, A. A., Annuzzi, G., Adiels, M., Borén, J., Mattila, I., Orešič, M., Aura, A-M. (2016). Metabolic transformations of dietary polyphenols: comparison between in vitro colonic and hepatic models and in vivo urinary metabolites. Journal of Nutritional Biochemistry, 33, 111-118.DOI:10.1016/j.jnutbio.2016.03.00




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2019;22

ARTíCULOS SIMILARES

CARGANDO ...