medigraphic.com
ENGLISH

Salud Pública de México

Instituto Nacional de Salud Pública
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2019, Número 3

<< Anterior Siguiente >>

salud publica mex 2019; 61 (3)


Cáncer pulmonar de células escamosas: evolución genómica y terapia personalizada

Cardona AF, Ricaurte L, Zatarain-Barrón ZL, Arrieta O
Texto completo Cómo citar este artículo Artículos similares

Idioma: Ingles.
Referencias bibliográficas: 86
Paginas: 329-338
Archivo PDF: 428.34 Kb.


PALABRAS CLAVE

carcinoma de células escamosas, terapia personalizada, terapia dirigida, firma genómica, cáncer de pulmón, genómica.

RESUMEN

Objetivo. Revisar el estado del arte en relación con la información actual sobre el cáncer de pulmón de células escamosas (CPCE) y describir las anomalías genéticas reportadas, su efecto y los agentes terapéuticos más prometedores. Material y métodos. Se realizó una revisión de artículos publicados en revistas indizadas, así como las guías de tratamiento publicadas por instancias locales e internacionales. Resultados. El CPCE representa una proporción menor de la carga mundial de la enfermedad por cáncer pulmonar en comparación con su presentación más frecuente, el adenocarcinoma. Sin embargo, más de 400 000 casos son reportados anualmente, una población sustancial para quienes las opciones terapéuticas son escasas y con una eficacia limitada. Diversos grupos se han dado a la tarea de elucidar los mecanismos que conllevan al desarrollo del CPCE, incluyendo anomalías moleculares que puedan servir como blancos para el diseño de fármacos. Conclusiones. Existen blancos terapéuticos potenciales para el CPCE que deben ser estudiados en ensayos clínicos para ser validados.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60(5):277-300. https://doi.org/10.3322/caac.20073

  2. GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1545- 602. https://doi.org/10.1016/S0140-6736(16)31678-6

  3. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359-86. https:// doi.org/10.1002/ijc.29210

  4. Gandara DR, Hammerman PS, Sos ML, Lara PN Jr, Hirsch FR. Squamous cell lung cancer: from tumor genomics to cancer therapeutics. Clin Cancer Res. 2015;21(10):2236-43. https://doi.org/10.1158/1078-0432. CCR-14-3039

  5. Khuder SA, Mutgi AB. Effect of smoking cessation on major histologic types of lung cancer. Chest. 2001;120(5):1577-83. https://doi.org/10.1378/ chest.120.5.1577

  6. Burns DM, Anderson CM, Gray N. Do changes in cigarette design influence the rise in adenocarcinoma of the lung? Cancer Causes Control. 2011;22(1):13-22. https://doi.org/10.1007/s10552-010-9660-0

  7. Burns DM, Anderson CM, Gray N. Has the lung cancer risk from smoking increased over the last fifty years? Cancer Causes Control. 2011;22(3):389-97. https://doi.org/10.1007/s10552-010-9708-1

  8. Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489(7417):519-25. https://doi.org/10.1038/nature11404

  9. Sousa V, Espirito-Santo J, Silva M, Cabral T, Alarcao AM, Gomes A, et al. EGFR/erB-1, HER2/erB-2, CK7, LP34, Ki67 and P53 expression in preneoplastic lesions of bronchial epithelium: an immunohistochemical and genetic study. Virchows Arch. 2011;458(5):571-81. https://doi.org/10.1007/ s00428-011-1062-5

  10. Lee JJ, Liu D, Lee JS, Kurie JM, Khuri FR, Ibarguen H, et al. Long-term impact of smoking on lung epithelial proliferation in current and former smokers. J Natl Cancer Inst. 2001;93(14):1081-8. https://doi.org/10.1093/ jnci/93.14.1081

  11. Massion PP, Taflan PM, Shyr Y, Rahman SM, Yildiz P, Shakthour B, et al. Early involvement of the phosphatidylinositol 3-kinase/Akt pathway in lung cancer progression. Am J Respir Crit Care Med. 2004;170(10):1088-94. https://doi.org/10.1164/rccm.200404-487OC

  12. Shabnam MS, Srinivasan R, Wali A, Majumdar S, Joshi K, Behera D. Expression of p53 protein and the apoptotic regulatory molecules Bcl-2, Bcl- XL, and Bax in locally advanced squamous cell carcinoma of the lung. Lung Cancer. 2004;45(2):181-8. https://doi.org/10.1016/j.lungcan.2004.01.021

  13. Kohno H, Hiroshima K, Toyozaki T, Fujisawa T, Ohwada H. p53 mutation and allelic loss of chromosome 3p, 9p of preneoplastic lesions in patients with nonsmall cell lung carcinoma. Cancer. 1999;85(2):341-7. https://doi.org/10.1002/(SICI)1097-0142(19990115)85:2<341::AIDCNCR11> 3.0.CO;2-S

  14. Boyle JO, Lonardo F, Chang JH, Klimstra D, Rusch V, Dmitrovsky E. Multiple high-grade bronchial dysplasia and squamous cell carcinoma: concordant and discordant mutations. Clin Cancer Res. 2001;7(2):259-66.

  15. Massion PP, Taflan PM, Jamshedur Rahman SM, Yildiz P, Shyr Y, Edgerton ME, et al. Significance of p63 amplification and overexpression in lung cancer development and prognosis. Cancer Res. 2003;63(21):7113-21.

  16. Brambilla E, Gazzeri S, Lantuejoul S, Coll JL, Moro D, Negoescu A, et al. p53 mutant immunophenotype and deregulation of p53 transcription pathway (Bcl2, Bax, and Waf1) in precursor bronchial lesions of lung cancer. Clin Cancer Res. 1998;4(7):1609-18.

  17. Lamy A, Sesboue R, Bourguignon J, Dautreaux B, Metayer J, Frebourg T, et al. Aberrant methylation of the CDKN2a/p16INK4a gene promoter region in preinvasive bronchial lesions: a prospective study in high-risk patients without invasive cancer. Int J Cancer. 2002;100(2):189-93. https:// doi.org/10.1002/ijc.10474

  18. Brambilla E, Gazzeri S, Moro D, Lantuejoul S, Veyrenc S, Brambilla C. Alterations of Rb pathway (Rb-p16INK4-cyclin D1) in preinvasive bronchial lesions. Clin Cancer Res. 1999;5(2):243-50.

  19. Lantuejoul S, Salameire D, Salon C, Brambilla E. Pulmonary preneoplasia-- sequential molecular carcinogenetic events. Histopathology. 2009;54(1):43-54. https://doi.org/10.1111/j.1365-2559.2008.03182.x

  20. Sozzi G, Pastorino U, Moiraghi L, Tagliabue E, Pezzella F, Ghirelli C, et al. Loss of FHIT function in lung cancer and preinvasive bronchial lesions. Cancer Res. 1998;58(22):5032-7.

  21. Capkova L, Kalinova M, Krskova L, Kodetova D, Petrik F, Trefny M, et al. Loss of heterozygosity and human telomerase reverse transcriptase (hTERT) expression in bronchial mucosa of heavy smokers. Cancer. 2007;109(11):2299-307. https://doi.org/10.1002/cncr.22683

  22. Shibuya K, Fujisawa T, Hoshino H, Baba M, Saitoh Y, Iizasa T, et al. Increased telomerase activity and elevated hTERT mRNA expression during multistage carcinogenesis of squamous cell carcinoma of the lung. Cancer. 2001;92(4):849-55. https://doi.org/10.1002/1097- 0142(20010815)92:4<849::AID-CNCR1392>3.0.CO;2-4

  23. Zalewska-Ziob M, Dobija-Kubica K, Biernacki K, Adamek B, Kasperczyk J, Brulinski K, et al. Clinical and prognostic value of hTERT mRNA expression in patients with non-small-cell lung cancer. Acta Biochim Pol. 2017;64(4):641-6. https://doi.org/10.18388/abp.2017_1618

  24. Fontanini G, Calcinai A, Boldrini L, Lucchi M, Mussi A, Angeletti CA, et al. Modulation of neoangiogenesis in bronchial preneoplastic lesions. Oncology reports. 1999;6(4):813-7. https://doi.org/10.3892/or.6.4.813

  25. Merrick DT, Haney J, Petrunich S, Sugita M, Miller YE, Keith RL, et al. Overexpression of vascular endothelial growth factor and its receptors in bronchial dysplasia demonstrated by quantitative RT-PCR analysis. Lung Cancer. 2005;48(1):31-45. https://doi.org/10.1016/j.lungcan.2004.07.049

  26. Mascaux C, Martin B, Verdebout JM, Ninane V, Sculier JP. COX-2 expression during early lung squamous cell carcinoma oncogenesis. Eur Respir J. 2005;26(2):198-203. https://doi.org/10.1183/09031936.05.00001405

  27. Cavarga I, Kocan P, Boor A, Belak J, Zak V, Kluchova Z, et al. Immunohistochemical markers of proliferation and vascularisation in preneoplastic bronchial lesions and invasive non-small cell lung cancer. Neoplasma. 2009;56(5):414-21. https://doi.org/10.4149/neo_2009_05_414

  28. Galateau-Salle FB, Luna RE, Horiba K, Sheppard MN, Hayashi T, Fleming MV, et al. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in bronchial squamous preinvasive lesions. Human Pathol. 2000;31(3):296-305. https://doi.org/10.1016/S0046-8177(00)80242-7

  29. Tang X, Liu D, Shishodia S, Ozburn N, Behrens C, Lee JJ, et al. Nuclear factor-kappaB (NF-kappaB) is frequently expressed in lung cancer and preneoplastic lesions. Cancer. 2006;107(11):2637-46. https://doi. org/10.1002/cncr.22315

  30. Cappello F, Di Stefano A, David S, Rappa F, Anzalone R, La Rocca G, et al. Hsp60 and Hsp10 down-regulation predicts bronchial epithelial carcinogenesis in smokers with chronic obstructive pulmonary disease. Cancer. 2006;107(10):2417-24. https://doi.org/10.1002/cncr.22265

  31. Romeo MS, Sokolova IA, Morrison LE, Zeng C, Baron AE, Hirsch FR, et al. Chromosomal abnormalities in non-small cell lung carcinomas and in bronchial epithelia of high-risk smokers detected by multi-target interphase fluorescence in situ hybridization. J Mol Diagn. 2003;5(2):103-12. https://doi.org/10.1016/S1525-1578(10)60459-X

  32. Hilbe W, Auberger J, Dirnhofer S, Schmid T, Erdel M, Duba HC. High rate of molecular alteration in histologically tumour-free bronchial epithelium of NSCLC patients detected by multicolour fluorescence in situ hybridisation. Oncol Rep. 2006;15(5):1233-40. https://doi.org/10.3892/or.15.5.1233

  33. Woenckhaus M, Grepmeier U, Wild PJ, Merk J, Pfeifer M, Woenckhaus U, et al. Multitarget FISH and LOH analyses at chromosome 3p in nonsmall cell lung cancer and adjacent bronchial epithelium. Am J Clin Pathol. 2005;123(5):752-61. https://doi.org/10.1309/C4BK-7GQV-8E5X-U2TL

  34. Dong XY, Lu YJ, Tong T, Wang YJ, Guo SP, Bai JF, et al. Molecular cytogenetic alterations in the early stage at human bronchial epithelial cell carcinogenesis. J Cell Biochem Suppl. 1997;28-29:74-80. https://doi. org/10.1002/(SICI)1097-4644(1997)28/29+<74::AID-JCB8>3.0.CO;2-T

  35. Jeanmart M, Lantuejoul S, Fievet F, Moro D, Sturm N, Brambilla C, et al. Value of immunohistochemical markers in preinvasive bronchial lesions in risk assessment of lung cancer. Clin Cancer Res. 2003;9(6):2195-203.

  36. Endo C, Sato M, Fujimura S, Sakurada A, Aikawa H, Takahashi S, et al. Allelic loss on 17p13 (TP53) and allelic loss on 3p21 in early squamous cell carcinoma of the lung. Surg Today. 2000;30(8):695-9. https://doi. org/10.1007/s005950070079

  37. Wistuba II, Behrens C, Milchgrub S, Bryant D, Hung J, Minna JD, et al. Sequential molecular abnormalities are involved in the multistage development of squamous cell lung carcinoma. Oncogene. 1999;18(3):643-50. https://doi.org/10.1038/sj.onc.1202349

  38. Lee W, Jiang Z, Liu J, Haverty PM, Guan Y, Stinson J, et al. The mutation spectrum revealed by paired genome sequences from a lung cancer patient. Nature. 2010;465(7297):473-7. https://doi.org/10.1038/nature09004

  39. Govindan R, Ding L, Griffith M, Subramanian J, Dees ND, Kanchi KL, et al. Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell. 2012;150(6):1121-34. https://doi.org/10.1016/j. cell.2012.08.024

  40. Imielinski M, Berger AH, Hammerman PS, Hernandez B, Pugh TJ, Hodis E, et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell. 2012;150(6):1107-20. https://doi.org/10.1016/j. cell.2012.08.029

  41. Clinical Lung Cancer Genome Project, Network Genomic Medicine. A genomics-based classification of human lung tumors. Sci Transl Med. 2013;5(209):209ra153. https://doi.org/10.1126/scitranslmed.3006802

  42. Liu L, Liu J, Shao D, Deng Q, Tang H, Liu Z, et al. Comprehensive genomic profiling of lung cancer using a validated panel to explore therapeutic targets in East Asian patients. Cancer Sci. 2017;108(12):2487-94. https:// doi.org/10.1111/cas.13410

  43. Stransky N, Egloff AM, Tward AD, Kostic AD, Cibulskis K, Sivachenko A, et al. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333(6046):1157-60. https://doi.org/10.1126/science.1208130

  44. Kim Y, Hammerman PS, Kim J, Yoon JA, Lee Y, Sun JM et al. Integrative and comparative genomic analysis of lung squamouscell carcionomas in East Asian Patients. J Clin Oncol. 2014;32(2):121-8. https://doi. org/10.1200/JCO.2013.50.8556

  45. Paik PK, Hasanovic A, Wang L, Rekhtman N, Ladanyi M, Kris MG. Multiplex testing for driver mutations in squamous cell carcinomas of the lung. J Clin Oncol. 2012;15(suppl):7505. https://doi.org/10.1200/ jco.2012.30.15_suppl.7505

  46. Socinski MA, Bondarenko I, Karaseva NA, Makhson AM, Vynnychenko I, Okamoto I, et al. Weekly nab-paclitaxel in combination with carboplatin versus solvent-based paclitaxel plus carboplatin as first-line therapy in patients with advanced non-small-cell lung cancer: final results of a phase III trial. J Clin Oncol. 2012;30(17):2055-62. https://doi.org/10.1200/ JCO.2011.39.5848

  47. Yoo SH, Park YS, Kim HR, Sung SW, Kim JH, Shim YS, et al. Expression of caveolin-1 is associated with poor prognosis of patients with squamous cell carcinoma of the lung. Lung Cancer. 2003;42(2):195-202. https://doi. org/10.1016/S0169-5002(03)00287-3

  48. Chen Y, Li J, Chen S, Zhang Y, Hu Y, Zhang G, et al. Nab-paclitaxel in combination with cisplatin versus docetaxel plus cisplatin as first-line therapy in non-small cell lung Cancer. Sci Rep. 2017;7(1):10760. https://doi. org/10.1038/s41598-017-11404-9

  49. Miyauchi E, Inoue A, Usui K, Sugawara S, Maemondo M, Saito H, et al. Phase II study of modified carboplatin plus weekly nab-paclitaxel in elderly patients with non-small cell lung cancer: North Japan lung cancer study group trial 1301. Oncologist. 2017;22(6):640-e59. https://doi.org/10.1634/ theoncologist.2017-0059

  50. Shukuya T, Yamanaka T, Seto T, Daga H, Goto K, Saka H, et al. Nedaplatin plus docetaxel versus cisplatin plus docetaxel for advanced or relapsed squamous cell carcinoma of the lung (WJOG5208L): a randomised, open-label, phase 3 trial. Lancet Oncol. 2015;16(16):1630-8. https://doi. org/10.1016/S1470-2045(15)00305-8

  51. Pirker R, Pereira JR, Szczesna A, von Pawel J, Krzakowski M, Ramlau R, et al. Cetuximab plus chemotherapy in patients with advanced non-smallcell lung cancer (FLEX): an open-label randomised phase III trial. Lancet. 2009;373(9674):1525-31. https://doi.org/10.1016/S0140-6736(09)60569-9

  52. Pirker R, Pereira JR, von Pawel J, Krzakowski M, Ramlau R, Park K, et al. EGFR expression as a predictor of survival for first-line chemotherapy plus cetuximab in patients with advanced non-small-cell lung cancer: analysis of data from the phase 3 FLEX study. Lancet Oncol. 2012;13(1):33-42. https://doi.org/10.1016/S1470-2045(11)70318-7

  53. Thatcher N, Hirsch FR, Luft AV, Szczesna A, Ciuleanu TE, Dediu M, et al. Necitumumab plus gemcitabine and cisplatin versus gemcitabine and cisplatin alone as first-line therapy in patients with stage IV squamous nonsmall- cell lung cancer (SQUIRE): an open-label, randomised, controlled phase 3 trial. Lancet Oncol. 2015;16(7):763-74. https://doi.org/10.1016/ S1470-2045(15)00021-2

  54. Genova C, Socinski MA, Hozak RR, Mi G, Kurek R, Shahidi J, et al. EGFR gene copy number by FISH may predict outcome of necitumumab in squamous lung carcinomas: analysis from the SQUIRE Study. J Thorac Oncol. 2018;13(2):228-36. https://doi.org/10.1016/j.jtho.2017.11.109

  55. Paz-Ares L, Socinski MA, Shahidi J, Hozak RR, Soldatenkova V, Kurek R, et al. Correlation of EGFR-expression with safety and efficacy outcomes in SQUIRE: a randomized, multicenter, open-label, phase III study of gemcitabine-cisplatin plus necitumumab versus gemcitabine-cisplatin alone in the first-line treatment of patients with stage IV squamous non-smallcell lung cancer. Ann Oncol. 2016;27(8):1573-9. https://doi.org/10.1093/ annonc/mdw214

  56. Bonomi PD, Gandara D, Hirsch FR, Kerr KM, Obasaju C, Paz-Ares L, et al. Predictive biomarkers for response to EGFR-directed monoclonal antibodies for advanced squamous cell lung cancer. Ann Oncol. 2018;29(8):1701-9. https://doi.org/10.1093/annonc/mdy196

  57. Novello S, Barlesi F, Califano R, Cufer T, Ekman S, Levra MG, et al. Metastatic non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2016;27(suppl 5):v1-27. https://doi.org/10.1093/annonc/mdw326

  58. Soria JC, Felip E, Cobo M, Lu S, Syrigos K, Lee KH, et al. Afatinib versus erlotinib as second-line treatment of patients with advanced squamous cell carcinoma of the lung (LUX-Lung 8): an open-label randomised controlled phase 3 trial. Lancet Oncol. 2015;16(8):897-907. https://doi. org/10.1016/S1470-2045(15)00006-6

  59. Gadgeel S, Goss G, Soria JC, Felip E, Georgoulias V, Lu S, et al. Evaluation of the VeriStrat((R)) serum protein test in patients with advanced squamous cell carcinoma of the lung treated with second-line afatinib or erlotinib in the phase III LUX-Lung 8 study. Lung Cancer. 2017;109:101-8. https://doi.org/10.1016/j.lungcan.2017.05.010

  60. Goss GD, Felip E, Cobo M, Lu S, Syrigos K, Lee KH, et al. Association of ERBB mutations with clinical outcomes of afatinib- or erlotinib-treated patients with lung squamous cell carcinoma: secondary analysis of the LUX-Lung 8 randomized clinical trial. JAMA Oncol. 2018;4(9):1189-97. https://doi.org/10.1001/jamaoncol.2018.0775

  61. Garon EB, Ciuleanu TE, Arrieta O, Prabhash K, Syrigos KN, Goksel T, et al. Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): a multicentre, doubleblind, randomised phase 3 trial. Lancet. 2014;384(9944):665-73. https://doi. org/10.1016/S0140-6736(14)60845-X

  62. Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010;10(2):116-29. https://doi. org/10.1038/nrc2780

  63. Weiss J, Sos ML, Seidel D, Peifer M, Zander T, Heuckmann JM, et al. Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer. Sci Transl Med. 2010;2(62):62ra93. https://doi.org/10.1126/scitranslmed.3001451

  64. Dutt A, Ramos AH, Hammerman PS, Mermel C, Cho J, Sharifnia T, et al. Inhibitor-sensitive FGFR1 amplification in human non-small cell lung cancer. PloS one. 2011;6(6):e20351. https://doi.org/10.1371/journal. pone.0020351

  65. Paik PK, Shen R, Berger MF, Ferry D, Soria JC, Mathewson A, et al. A Phase Ib open-label multicenter study of AZD4547 in patients with advanced squamous cell lung cancers. Clin Cancer Res. 2017;23(18):5366- 73. https://doi.org/10.1158/1078-0432.CCR-17-0645

  66. Aggarwal C, Redman MW, Lara P, Borghaei H, Hoffman P, Bradley J, et al. Phase II study of the FGFR inhibitor AZD4547 in previously treated patients with FGF pathway-activated stage IV squamous cell lung cancer (SqNSCLC): LUNG-MAP sub-study SWOG S1400D. J Clin Oncol. 2017;15(suppl):9055. https://doi.org/10.1200/JCO.2017.35.15_suppl.9055

  67. Hyman D, Tran B, Corral-Jaime J, Garralda E, Machiels JP, Schellens HMJ, et al. Phase Ib study of BGJ398 in combination with BYL719 in patients (pts) with select advanced solid tumors. J Clin Oncol. 2016;34(suppl):2500. https://doi.org/10.1200/JCO.2016.34.15_suppl.2500

  68. Tolcher AW, Papadopoulos KP, Patnaik A, Wilson K, Thayer S, Zanghi J, et al. A phase I, first in human study of FP-1039 (GSK3052230), a novel FGF ligand trap, in patients with advanced solid tumors. Ann Oncol. 2016;27(3):526-32. https://doi.org/10.1093/annonc/mdv591

  69. Yamamoto H, Shigematsu H, Nomura M, Lockwood WW, Sato M, Okumura N, et al. PIK3CA mutations and copy number gains in human lung cancers. Cancer Res. 2008;68(17):6913-21. https://doi.org/10.1158/0008- 5472.CAN-07-5084

  70. Wade JL, Langer C, Redman M, Aggarwal M, Bradley JD, Crawford J, et al. A phase II study of GDC-0032 (taselisib) for previously treated PI3K positive patients with stage IV squamous cell lung cancer (SqNSCLC): LUNG-MAP sub-study SWOG S1400B. J Clin Oncol. 35:15(suppl):9054. https://doi.org/10.1200/JCO.2017.35.15_suppl.9054

  71. Jin G, Kim MJ, Jeon HS, Choi JE, Kim DS, Lee EB, et al. PTEN mutations and relationship to EGFR, ERBB2, KRAS, and TP53 mutations in non-small cell lung cancers. Lung Cancer. 2010;69(3):279-83. https://doi. org/10.1016/j.lungcan.2009.11.012

  72. Sos ML, Koker M, Weir BA, Heynck S, Rabinovsky R, Zander T, et al. PTEN loss contributes to erlotinib resistance in EGFR-mutant lung cancer by activation of Akt and EGFR. Cancer Res. 2009;69(8):3256-61. https:// doi.org/10.1158/0008-5472.CAN-08-4055

  73. Peng W, Chen JQ, Liu C, Malu S, Creasy C, Tetzlaff MT, et al. Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy. Cancer Discov. 2016;6(2):202-16. https://doi.org/10.1158/2159-8290.CD-15-0283

  74. Lara PN Jr, Longmate J, Mack PC, Kelly K, Socinski MA, Salgia R, et al. Phase II study of the AKT inhibitor MK-2206 plus erlotinib in patients with advanced non-small cell lung cancer who previously progressed on erlotinib. Clin Cancer Res. 2015;21(19):4321-6. https://doi. org/10.1158/1078-0432.CCR-14-3281

  75. Ramos AH, Dutt A, Mermel C, Perner S, Cho J, Lafargue CJ, et al. Amplification of chromosomal segment 4q12 in non-small cell lung cancer. Cancer Biol Ther. 2009;8(21):2042-50. https://doi.org/10.4161/ cbt.8.21.9764

  76. Scagliotti G, Novello S, von Pawel J, Reck M, Pereira JR, Thomas M, et al. Phase III study of carboplatin and paclitaxel alone or with sorafenib in advanced non-small-cell lung cancer. J Clin Oncol. 2010;28(11):1835-42. https://doi.org/10.1200/JCO.2009.26.1321

  77. Byers LA, Wang J, Nilsson MB, Fujimoto J, Saintigny P, Yordy J, et al. Proteomic profiling identifies dysregulated pathways in small cell lung cancer and novel therapeutic targets including PARP1. Cancer Discov. 2012;2(9):798-811. https://doi.org/10.1158/2159-8290.CD-12-0112

  78. Paul I, Savage KI, Blayney JK, Lamers E, Gately K, Kerr K, et al. PARP inhibition induces BAX/BAK-independent synthetic lethality of BRCA1- deficient non-small cell lung cancer. J Pathol. 2011;224(4):564-74. https:// doi.org/10.1002/path.2925

  79. Ramalingam SS, Blais N, Mazieres J, Reck M, Jones CM, Juhasz E, et al. Randomized, placebo-controlled, phase II study of veliparib in combination with carboplatin and paclitaxel for advanced/metastatic non-small cell lung cancer. Clin Cancer Res. 2017;23(8):1937-44. https://doi. org/10.1158/1078-0432.CCR-15-3069

  80. Terai H, Tan L, Beauchamp EM, Hatcher JM, Liu Q, Meyerson M, et al. Characterization of DDR2 inhibitors for the treatment of DDR2 mutated nonsmall cell lung cancer. ACS Chem Biol. 2015;10(12):2687-96. https:// doi.org/10.1021/acschembio.5b00655

  81. Hammerman PS, Sos ML, Ramos AH, Xu C, Dutt A, Zhou W, et al. Mutations in the DDR2 kinase gene identify a novel therapeutic target in squamous cell lung cancer. Cancer Discov. 2011;1(1):78-89. https://doi. org/10.1158/2159-8274.CD-11-0005

  82. Xu C, Buczkowski KA, Zhang Y, Asahina H, Beauchamp EM, Terai H, et al. NSCLC driven by DDR2 mutation is sensitive to dasatinib and JQ1 combination therapy. Mol Cancer Ther. 2015;14(10):2382-9. https://doi. org/10.1158/1535-7163.MCT-15-0077

  83. Chen D, Zhang LQ, Huang JF, Liu K, Chuai ZR, Yang Z, et al. BRAF mutations in patients with non-small cell lung cancer: a systematic review and meta-analysis. PloS one. 2014;9(6):e101354. https://doi.org/10.1371/ journal.pone.0101354

  84. Paik PK, Arcila ME, Fara M, Sima CS, Miller VA, Kris MG, et al. Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. J Clin Oncol. 2011;29(15):2046-51. https://doi.org/10.1200/ JCO.2010.33.1280

  85. Marchetti A, Felicioni L, Malatesta S, Grazia-Sciarrotta M, Guetti L, Chella A, et al. Clinical features and outcome of patients with non-small-cell lung cancer harboring BRAF mutations. J Clin Oncol. 2011;29(26):3574-9. https://doi.org/10.1200/JCO.2011.35.9638

  86. Planchard D, Smit EF, Groen HJM, Mazieres J, Besse B, Helland A, et al. Dabrafenib plus trametinib in patients with previously untreated BRAF(V600E)-mutant metastatic non-small-cell lung cancer: an open-label, phase 2 trial. Lancet Oncol. 2017;18(10):1307-16. https://doi.org/10.1016/ S1470-2045(17)30679-4




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

salud publica mex. 2019;61

ARTíCULOS SIMILARES

CARGANDO ...