medigraphic.com
ENGLISH

Revista de Educación Bioquímica

  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2019, Número 1

<< Anterior Siguiente >>

Rev Educ Bioquimica 2019; 38 (1)


Endocitosis en plantas (parte I): inducida por factores abioticos, bioticos y hormonas

Dávila-Delgado R, Gómez-Méndez MF, Vera-Estrella R, Sánchez-López R
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 31
Paginas: 14-22
Archivo PDF: 454.52 Kb.


PALABRAS CLAVE

Endocitosis, bacterias, plantas, factores bióticos, factores abióticos.

RESUMEN

Las plantas son organismos sésiles que se encuentran expuestos a una diversidad de estímulos como factores bióticos, abióticos y a la regulación hormonal propia de la planta. En buena medida estos estímulos al ser percibidos por receptores membranales, desencadenan la activación de vías de señalización y, por ende, la regulación de varios mecanismos bioquímicos y celulares. La endocitosis de proteínas membranales es una de las etapas de regulación en diversos mecanismos de control que las células han desarrollado para atenuar, modular o inhibir las respuestas celulares. La presente revisión recapitula información sobre los receptores y proteínas de membrana mejor caracterizados en células vegetales en el contexto de la endocitosis en respuesta a factores bióticos, abióticos y hormonas.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Watanabe S, Boucrot E (2017) Fast and ultrafast endocytosis. Curr Opin Cell Biol 47:64-71.

  2. Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem 78:857- 902.

  3. Holstein SE (2002) Clathrin and plant endocytosis. Traffic 3:614-620.

  4. Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265-276.

  5. Mbengue M, Bourdais G, Gervasi F, Beck M, Zhou J, Spallek T, Bartels S, Boller T, Ueda T, Kuhn H, Robatzek S (2016) Clathrin dependent endocytosis is required for immunity mediated by pattern recognition receptor kinases. Proc Natl Acad Sci U S A. 113:11034-11039.

  6. Bücherl CA, Jarsch IK, Schudoma C, Segonzac C, Mbengue M, Robatzek S, MacLean D, Ott T, Zipfel C (2017) Plant immune and growth receptors share common signalling components but localise to distinct plasma membrane nanodomains. eLife 6:e25114.

  7. Liu Y, He C (2016) Regulation of plant reactive oxygen species (ROS) in stress responses: learning from AtRBOHD. Plant Cell Rep 35:995-1007.

  8. Ott T (2017) Membrane nanodomains and microdomains in plant-microbe interactions. Curr Opin Plant Biol 40:82-88.

  9. Hao H, Fan L, Chen T, Li R, Li X, He Q, Botella MA, Lin J (2014) Clathrin and membrane microdomains cooperatively regulate RbohD dynamics and activity in Arabidopsis. Plant Cell 26:1729-1745.

  10. Noirot E, Der C, Lherminier J, Robert F, Moricova P, Kiêu K, Leborgne-Castel N, Simon- Plas F, Bouhidel K (2014) Dynamic changes in the subcellular distribution of the tobacco ROS producing enzyme RBOHD in response to the oomycete elicitor cryptogein. J Exp Bot 65:5011-5022.

  11. Bar M, Sharfman M, Ron M, Avni A (2010) BAK1 is required for the attenuation of ethylene-inducing xylanase (Eix)-induced defense responses by the decoy receptor LeEix1. Plant J 63:791-800.

  12. Sharfman M, Bar M, Ehrlich M, Schuster S, Melech-Bonfil S, Ezer R, Sessa G, Avni A (2011) Endosomal signaling of the tomato leucine-rich repeat receptor-like protein LeEix2. Plant J 68:413-423.

  13. Bar M, Avni A (2009) EHD2 inhibits signaling of leucine rich repeat receptor-like proteins. Plant Signal Behav 4:682-684.

  14. Oldroyd GE (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nature Rev 11:252-263.

  15. Yoshinari A, Takano J (2017) Insights into the mechanisms underlying boron homeostasis in plants. Front Plant Sci 8:1951

  16. Barberon M, Zelazny E, Robert S, Conéjéro G, Curie C, Friml J, Vert G (2011) Monoubiquitindependent endocytosis of the iron-regulated transporter 1 (IRT1) transporter controls iron uptake in plants. Proc Natl Acad Sci U S A 108:450-458.

  17. Zelazny E, Vert G (2015) Regulation of Iron Uptake by IRT1: Endocytosis pulls the trigger. Mol Plant 8:977-979.

  18. Ljung K (2013) Auxin metabolism and homeostasis during plant development. Development 140:943-950.

  19. Kleine-Vehn J, Ding Z, Jones AR, Tasaka M, Morita MT, Friml J (2010) Gravity-induced PIN transcytosis for polarization of auxin fluxes in gravity-sensing root cells. Proc Natl Acad Sci U S A 107:22344-9.

  20. Abas L, Benjamins R, Malenica N, Paciorek T, Wiśniewska J, Moulinier-Anzola JC, Sieberer T, Friml J, Luschnig C (2006) Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nat Cell Biol 8:249- 256.

  21. Li X, Wang X, Yang Y, Li R, He Q, Fang X, Luu DT, Maurel C, Lin J (2011) Single-molecule analysis of PIP2;1 dynamics and partitioning reveals multiple modes of Arabidopsis plasma membrane aquaporin regulation. Plant Cell 23:3780-3797.

  22. Colaneri AC, Tunc-Ozdemir M, Huang JP, Jones AM (2014) Growth attenuation under saline stress is mediated by the heterotrimeric G protein complex. BMC Plant Biol 14:129.

  23. Wang Q, Zhao Y, Luo W, Li R, He Q, Fang X, Michele RD, Ast C, von Wirén N, Lin J (2013) Single-particle analysis reveals shutoff control of the Arabidopsis ammonium transporter AMT1;3 by clustering and internalization. Proc Natl Acad Sci U S A 110:13204-13209.

  24. Egamberdieva D, Wirth SJ, Alqarawi AA, Abd Allah EF, Hashem A (2017) Phytohormones and Beneficial Microbes: Essential Components for Plants to Balance Stress and Fitness. Front Microbiol 8:2104.

  25. Robert S, Kleine-Vehn J, Barbez E, Sauer M, Paciorek T, Baster P, Vanneste S, Zhang J, Simon S, Čovanová M, Hayashi K, Dhonukshe P, Yang Z, Bednarek SY, Jones AM, Luschnig C, Aniento F, Zažímalová E, Friml J (2010) ABP1 mediates auxin inhibition of clathrindependent endocytosis in Arabidopsis. Cell 143:111-121.

  26. Lin D, Nagawa S, Chen J, Cao L, Chen X, Xu T, Li H, Dhonukshe P, Yamamuro C, Friml J, Scheres B, Fu Y, Yang Z (2012) A ROP GTPase-dependent auxin signaling pathway regulates the subcellular distribution of PIN2 in Arabidopsis roots. Curr Biol 22:1319-1325.

  27. Du Y, Tejos R, Beck M, Himschoot E, Li H, Robatzek S, Vanneste S, Friml J (2013) Salicylic acid interferes with clathrin-mediated endocytic protein trafficking. Proc Natl Acad Sci U S A 110:7946-7951.

  28. Marhav´y P, Duclercq J, Weller B, Feraru E, Bielach A, Offringa R, Friml J, Schwechheimer C, Murphy A, Benková E (2014) Cytokinin controls polarity of PIN1-dependent auxin transport during lateral root organogenesis. Curr Biol 24:1031-1037.

  29. Marhav´y P, Bielach A, Abas L, Abuzeineh A, Duclercq J, Tanaka H, Pařezová M, Petrášek J, Friml J, Kleine-Vehn J, Benková E (2011) Cytokinin modulates endocytic trafficking of PIN1 auxin efflux carrier to control plant organogenesis. Dev Cell 21:796-804.

  30. Di Rubbo S, Irani NG, Kim SY, Xu ZY, Gadeyne A, Dejonghe W, Vanhoutte I, Persiau G, Eeckhout D, Simon S, Song K, Kleine-Vehn J, Friml J, De Jaeger, G, Van Damme D, Hwang I, Russinova E (2013) The clathrin adaptor complex AP-2 mediates endocytosis of brassinosteroid insensitive1 in Arabidopsis. Plant Cell 25:2986-2997.

  31. Sutter JU, Sieben C, Hartel A, Eisenach C, Thiel G, Blatt MR (2007) Abscisic acid triggers the endocytosis of the Arabidopsis KAT1 K+ channel and its recycling to the plasma membrane. Curr Biol 17:1396-1402.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Educ Bioquimica. 2019;38

ARTíCULOS SIMILARES

CARGANDO ...