medigraphic.com
ENGLISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Digital)
ISSN 1405-888X (Impreso)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2019, Número 1

<< Anterior Siguiente >>

TIP Rev Esp Cienc Quim Biol 2019; 22 (1)


Actividad antioxidante y quelante de metales de las mieles de Melipona beecheii y Frieseomelitta nigra originarias de Tabasco, México

Sánchez-Chino XM, Jiménez-Martínez C, Ramírez-Arriaga E, Martínez-Herrera J, Corzo-Ríos LJ, Godínez GLM
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 45
Paginas: 1-7
Archivo PDF: 610.52 Kb.


PALABRAS CLAVE

miel, Mellipona beecheii, Frieseomelitta nigra, compuestos fenólicos, antioxidantes, actividad quelante, origen floral.

RESUMEN

La miel es un producto alimenticio con alto valor nutricional y potencial farmacológico. La mayoría de los estudios de este producto se han centrado en las propiedades de la miel producida por Apis mellifera, que se ha utilizado en medicina alternativa, destacando por sus actividades antioxidantes, antimicrobianas y antiinflamatorias, entre otras. En este trabajo, se identificó el origen floral, la concentración de proteína soluble, los compuestos fenólicos y la actividad antioxidante y quelante de metales de las mieles producidas por Melipona beecheii y Frieseomelitta nigra,originarias de San Marcos, comunidad de Tenosique en Tabasco, México. Los resultados muestran que la miel producida por F. nigra es de origen polifloral derivada principalmente de la especie Piper sp., aff. Brosimum, Asteraceae, Ziziphus sp., Haematoxylum campechianum, mientras que la producida por M. beecheii fue monofloral (Eugenia sp.). La miel de F. nigra presentó mayor concentración de compuestos fenólicos y mayor efectividad para atrapar los radicales superóxido y DPPH, además de un mejor potencial de quelación del cobre. Por su parte, la miel de M. beecheii presentó mayor capacidad de captación de los radicales ABTS y quelación del hierro; mientras que la capacidad de absorción del radical hidroxilo fue similar para ambas mieles. Este trabajo resalta la importancia de contar con análisis palinológicos y bioquímicos sobre las mieles de las abejas nativas sin aguijón por el potencial terapéutico que tienen y de las cuales, en el caso de algunas especies, no se tiene información.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Aldasoro, M., Arnold, N. & Burguete, C. (2015). Los Meliponinos de Comalcalco, Tabasco una primera aproximación desde el enfoque biocultural. Presentada en: IX Congreso Mesoamericano sobre Abejas Nativas. IX Congreso Mesoamericano sobre Abejas Nativas

  2. Álvarez-Suárez, J. M., Tulipani, S., Romandini, S., Bertoli, E. & Battino, M. (2010). Contribution of honey in nutrition and human health: a review. Med. J. Nutr. Metab., 3, 15- 23. https://doi.org/10.1007/s12349-009-0051-6

  3. Álvarez-Suárez, J. M., Tulipani, S., Díaz, D., Esteves, Y., Romandini, S., Giampieri, F., Damiani, E., Astolfi, P., Bompadre, S. & Battino, M. (2010b). Antioxidant and antimicrobial capacity of several monofloral Cuban honeys and their correlation with color, polyphenol content and other chemical compounds. Food Chem. Toxicol., 48, 2490-2499. https:doi.org/10.1016/j.fct2010.06.021

  4. Álvarez-Suárez, J. M., Giampieri, F., González-Paramás, A. M., Damiani, E., Astolfi, P., Martínez-Sánchez, G., Bompadre, S., Quiles, J.L., Santos-Buelga, C. & Battino, M. (2012). Phenolics from monofloral honeys protect human erythrocyte membranes against oxidative damage. Food Chem. Toxicol., 50, 1508-1516. https://doi: 10.1016/j. fct.2012.01.042

  5. Alzahrani, H. A., Alsabehi, R., Boukraâ, L., Abdellah, F., Bellik, Y. & Bakhotmah, B. A. (2012). Antibacterial and antioxidant potency of floral honeys from different botanical and geographical origins. Molecules., (Basel, Switzerland), 17(9), 10540–10549. https://doi. org/10.3390/molecules170910540

  6. Amensour, M., Sendra, E., Abrini, J., Pérez-Álvarez, J. A. & Fernández-López, J. (2010). Antioxidant activity and total phenolic compounds of myrtle extracts. CyTA–J. Food., 8, 95–101. https://doi.org/10.1080/1947633 0903161335

  7. Amin, Z., Aina, F., Sabri, S., Mohammad, S. M., Ismail, M., Chan, K. W., Ismail, N., Norhaizn, M, E. & Zawawi, N. (2018). Therapeutic properties of stingless bee honey in comparison with European bee honey. Adv. Pharmacol. Sci., 1-12. https://doi.org/10.1155/2018/6179596

  8. Anthimidou, E. & Mossialos, D. (2013). Antibacterial activity of greek and cypriot honeys against Staphylococcus aureus and Pseudomonas aeruginosa in comparison to manuka honey. J. Med. Food., 16, 42–47. https://doi.org/10.1089/ jmf.2012.0042

  9. Ayala, R., González, V. H., & Engel, M. S. (2013). Mexican stingless bees (Hymenoptera: Apidae): diversity, distribution, and indigenous knowledge. In Pot-Honey. New York, NY: Springer New York. 135–152. https://doi. org/10.1007/978-1-4614-4960-79

  10. Baltrušaitytė, V., Venskutonis, P. R. & Čeksterytė, V. (2007). Radical scavenging activity of different floral origin honey and beebread phenolic extracts. Food Chem., 101, 502– 514.https://doi.org/10.1016/J.FOODCHEM .2006.02.007

  11. Bogdanov, S., Jurendic, T., Sieber, R. & Gallmann, P. (2008). Honey for nutrition and health: a review. J. Am. Coll. Nutr., 27(6), 677–689. http://doi:10.1080/07315724.2008 .10719745

  12. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.,72, 248–254. https://doi.org/ 10.1016/0003697 (76) 905273

  13. Carter, P. (1971). Spectrophotometric determination of serum iron at the submicrogram level with a new reagent (ferrozine). Anal. Biochem., 40, 450–458. https://doi. org/10.1016/0003-2697(71)90405-2

  14. Cauich, K. R., Ruiz-Ruiz, J. C., Ortiz, V. E & Segura, M. R. (2015). Potencial antioxidante de la miel de Melipona beecheii y su relación con la salud: una revisión. Nutr.. Hosp., 2 http://dx.doi.org/10.3305/nh.2015. 32.4.9312.

  15. Chan, G., Aldasoro, M., Sotelo, L & Vera, G. (2018). Retomando saberes contemporáneos. Un análisis del panorama actual de la meliponicultura en Tabasco. Estudios de Cultura Maya, 53, 289-325.

  16. Chua, L. S., Lee, J. Y. & Chan, G. F. (2015). Characterization of the proteins in honey. Lett., 48, 697-709.https://doi.org/ 10.1080/00032719.2014.952374

  17. Cimpoiu, C., Hosu, A., Miclaus, V. & Puscas, A. (2013). Determination of the floral origin of some romanian honeys on the basis of physical and biochemical properties. Spectrochim. Acta, Part A, 100, 149–154. https://doi. org/10.1016/j.saa.2012.04.008

  18. da Silva, P.M., Gauche, C., Gonzaga, L.V., Oliveira, A.C.O & Fett, R. (2016). Honey: Chemical composition, stability and authenticity, Food Chem.,196, 309–323. https://doi. org/10.1016/j.foodchem.2015.09.0512015.09.051

  19. Elías, R. J., Kellerby, S.S. & Decker, E. A., (2008). Antioxidant activity of proteins and Peptides. Crit. Rev. Food Sci. Nutr., 48, 430–441. https://doi.org/10.1080/10408390701425615.

  20. Erdtman, G. (1969). Handbook of Palynology - An Introduction to the Study of Pollen Grains and Spores. Munksgaard, Copenhagen. https://doi.org/10.1002/fedr.19710810815

  21. Gallegos-Tintoré. S., Chel, G. L., Corzo-Ríos. L.J. & Martínez A. A.L. (2013). Péptidos con actividad antioxidante de proteínas vegetales. En M. Segura-Campos, L. Chel- Guerrero & D. Betancur Ancona (Eds.), Bioactividad de péptidos derivados de proteínas alimentarias (111-122). Barcelona: Omnia Science. http://dx.doi.org/10.3926/ oms.94

  22. González, A. M., Gómez, J. A., Cordón, C., García-Villanova, R. J. & Sánchez, J. (2006). HPLC-fluorometric method for analysis of amino acids in products of the hive (honey and bee pollen). Food Chem., 95, 148-156. https://doi. org/10.1016/j.foodchem.2005.02.008

  23. Gül, A. & Pehlivan, T. (2018). Antioxidant activities of some monofloral honey types produced across Turkey. Saudi J. Biol. Sci., 25, 1056–1065. https://doi.org/10.1016/j. sjbs.2018.02.011.

  24. Islam, M. R., Pervin, T., Hossain, H., Saha, B. & Hossain, S. J. (2017). Physicochemical and antioxidant properties of honeys from the Sundarbans Mangrove Forest of Bangladesh. Prev. Nutr. Food Sci., 22, 335–344. https:// doi.org/10.3746/pnf.2017.22.4.335

  25. Jones, R. (2001). Honey and healing through the ages. In: Munn P, Jones R (eds) Honey and healing. International Bee Research Association IBRA, Cardiff, GB. 1-4

  26. Kujumgiev, A., Tsvetkova, I., Serkedjieva, Y., Bankova, V., Christov, R. & Popov, S. (1999). Antibacterial, antifungal and antiviral activity of propolis of different geographic origin. J. Ethnopharmacol., 64, 235–240. http://www.ncbi. nlm.nih.gov/pubmed/10363838

  27. Li, Y., Jiang, B., Zhang, T., Mu, W. & Liu, J. (2008). Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (CPH). Food Chem., 106, 444–450. https:// doi.org/10.1016/J.FOODCHEM.2007. 04.067

  28. Marklund, S. & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallal and a convenient assay for superoxide dismutase. Europ. J. Biochem., 47, 469-474. https://doi. org/10.1111/j.1432-1033.1974.tb03714.x

  29. Oomah, B. D., Cardador-Martínez, A. & Loarca-Piña, G. (2005). Phenolics and antioxidative activities in common beans (Phaseolus vulgaris L). J. Sci. Food Agric., 85, 935– 942. https://doi.org/10.1002/jsfa.2019

  30. Patlevič, P., Janka, V., Pavol, Š., Ladislav., V. & Pavol, Š. (2016). Reactive oxygen species and antioxidant defense in human gastrointestinal diseases. Integr. Med. Res., 5, 250–258.https://doi.org/10.1016/j.imr.2016.07.004.

  31. Pirini, A., Conte, L. S., Francioso, O. & Lercker, G. (1992). Capillary Gas chromatographic determination of free amino acids in honey as a means of discrimination between different botanical sources. J. High. Resolut. Chromatogr., 15, 165-170. https://doi.org/10.1002/jhrc. 1240150306

  32. Que, F., Linchun, M. & Xiaojie, Z. (2007). In vitro and vivo antioxidant activities of daylily flowers and the involvement of phenolic compounds. Asia Pac. J. Clin. Nutr., 16, 196–203. http://www.ncbi.nlm.nih.gov/pubmed/ 17392104.

  33. Quezada-Euán, J. J. G., de Jesús May-Itzá, W. & González- Acereto, J. A. (2001). Meliponiculture in Mexico: problems and perspective for development. Bee World, 82, 160–167. https://doi.org/10.1080/0005772X.2001.11099523

  34. Ramírez-Arriaga, E. & Martínez-Hernández, E. (2007). Melitopalynological characterization of Scaptotrigona mexicana Guérin (Apidae: Meliponini) and Apis mellifera L. (Apidae: Apini) honey samples in northern Puebla State, Mexico. Journal of the Kansas Entomological Society, 80, 377–391. DOI: 10.2317/0022-8567(2007)80[377:MCOS MG]2.0.CO;2

  35. Ramírez-Arriaga, E., Navarro-Calvo, L. A. & Díaz-Carbajal, E. (2011). Botanical characterization of Mexican honeys from a subtropical region (Oaxaca) based on pollen analysis. Grana, 50, 40–54. https://doi.org/10.1080/0017 3134.2010.537767

  36. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231–1237. http://www.ncbi.nlm. nih.gov/pubmed/10381194

  37. Ruiz-Ruiz, J. C., Matus-Basto, A. J., Acereto-Escoffié, P. & Segura-Campos, M. R. (2017). Antioxidant and anti- Inflammatory activities of phenolic compounds isolated from Melipona beecheii honey. Food Agric. Immunol., 28(6), 1424-1437. https://doi.org/10.1080/09540105.201 7.1347148.

  38. Saiga, A., Soichi, T. & Nishimura, T. (2003). Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. J. Agric. Food Chem., 51, 3661–3667. https://doi.org/10.1021/JF021156G

  39. Silici, S., Sagdic, O. & Ekici, L. (2010). Total phenolic content, antiradical, antioxidant and antimicrobial activities of Rhododendron honeys. Food Chem., 121, 238–243. https://doi.org/10.1016/J.FOODCHEM.2009.11.078

  40. Singleton, V. L. & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic., 6, 144-158. http://www. ajevonline.org/content/16/3/144

  41. Trautvetter, S., Koelling-Speer, I. & Speer, K. (2009). Confirmation of phenolic acids and flavonoids in honeys by UPLC-MS. Apidologie, 40, 140-150. https://doi. org/10.1051/apido/2008072

  42. Udenigwe, C. C., Lu, Y. L., Han, C. H., Hou, W. C. & Aluko, R. E. (2009). Flaxseed protein-derived peptide fractions: Antioxidant properties and inhibition of lipopolysaccharide-induced nitric oxide production in murine macrophages. Food Chem., 116, 277–284. https:// doi.org/10.1016/J.FOODCHEM.2009.02.046

  43. Varadharaj, S. Kelly, O. J., Khayat, R. N., Kumar, P. S., Ahmed, N. & Zweier, J.L. (2017). Role of dietary antioxidants in the preservation of vascular function and the modulation of health and disease. Front. Cardiovasc. Med., 4, 64 https:// doi.org/ 10.3389/ fcvm.2017.00064.

  44. Viuda-Martos, M., Ruiz-Navajas, Y., Fernández-López, J., & Pérez-Álvarez, J. (2008). Antibacterial activity of lemon (Citrus lemon L.), mandarin (Citrus reticulata L.), grapefruit (Citrus paradisi L.) and orange (Citrus sinensis L.) essential oils. J. Food Saf., 28, 567–576. https://doi. org/10.1111/j.17454565.2008.00131.x

  45. Zor, T. & Selinger, Z. (1996). Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. Anal. Biochem., 236, 302-308. https://doi.org/10.1006/abio.1996.0171




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2019;22

ARTíCULOS SIMILARES

CARGANDO ...