medigraphic.com
ENGLISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Digital)
ISSN 1405-888X (Impreso)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2019, Número 1

<< Anterior Siguiente >>

TIP Rev Esp Cienc Quim Biol 2019; 22 (1)


Telas de carbón activado: generalidades y aplicaciones

García-Guel YY, Múzquiz-Ramos EM, Ríos-Hurtado JC
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 83
Paginas: 1-16
Archivo PDF: 1411.03 Kb.


PALABRAS CLAVE

carbones activados, tela de carbón activado, precursores, impregnantes, activación.

RESUMEN

Los carbones activados (CA) son de gran interés debido a las excepcionales propiedades físicas y químicas que poseen, estos materiales se presentan en forma de gránulos o polvos, pero recientemente se ha comercializado una nueva forma de CA conocida como Fibra de Carbón Activado (FCA), que se puede fabricar en dos presentaciones, como tela y como fieltro. Las Telas de carbón activado (TCA) son materiales que poseen excelentes propiedades que las hacen superiores en comparación con las formas tradicionales y se producen a partir de precursores, mediante diversos procesos que incluyen activación física o química, entre los agentes impregnantes más utilizados se encuentran el KOH, H3PO4, ZnCl2, AlCl3, NH4Cl, Na2CO3 y K2CO3, cuya función principal es servir como deshidratantes impidiendo al mismo tiempo la producción de alquitranes. Las características y propiedades que adquieren las TCA dependen de la naturaleza del material que se utilizó para producirlas, estas características han sido aprovechadas en una gran cantidad de aplicaciones, como: medicina, sistemas de soporte de catalizadores, en la industria para la adsorción de contaminantes, purificación de aguas y tratamiento de aguas residuales, entre otras. Esta revisión muestra las generalidades y aplicaciones en estudios recientes y resume las aplicaciones de las TCA de las diferentes investigaciones realizadas, así como su proceso de obtención.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Adeniran, B. & Mokaya, R. (2015). Compactivation: a mechanochemical approach to carbons with superior porosity and exceptional performance for hydrogen and CO2 storage. Nano Energy, 16, 173–185. https://doi. org/10.1016/j.nanoen.2015.06.022

  2. Ahn, H.J., Lee, J.H., Jeong, Y., Lee, J.H., Chi, Ch. S. & Oh, H.J. (2007). Nanostructured carbon cloth electrode for desalination from aqueous solutions. Materials Science and Engineering A., 449, 841-845. https://doi:10.1016/j. msea.2006.02.448

  3. Babic, B. M., Milonjic, S. K.,Polovina, M. J. & Kaludierovic, B. V. (1999). Point of zero charge and intrinsic equilibrium constants of activated carbon cloth. Carbon, 37, 477-481. https://doi.org/10.1016/S0008-6223(98)00216-4

  4. Babic, B. M., Milonjic, S. K., Polovina, M. J., Cupic, S. & Kaludierovic, B. V. (2002). Adsorption of zinc, cadmium and mercuryions from aqueous solutions on an activated carbon cloth. Carbon, 40, 1109-1115. https://doi. org/10.1016/S0008-6223(01)00256-1

  5. Baroud, T.N. & Giannelis, E.P. (2018). High salt capacity and hig removal rate capacitive deionization enabled by hierarchicalporous carbons. Carbon, 139, 614-625. https://doi.org/10.1016/j.carbon.2018.05.053

  6. Blanco, D.A., Giraldo, L. & Moreno, J. C. (2007). Adsorción de resorcinol desde solución acuosa sobre carbón activado. Revista Energética, 38, 73-77.https:// DOI: 10.15446/rev. colomb.quim

  7. Boehm, A. V., Meininger, S., Tesch, A., Gbureck, U. & Müller, F. A. (2018). The Mechanical Properties of Biocompatible Apatite Bone Cement Reinforced with Chemically Activated Carbon Fibers. Materials, 11(192), 1-12. https://doi.org/10.3390/ma11020192

  8. Caglayan, B. & Aksoylu, B. (2013). CO2 adsorption on chemically modified activated carbon. J. Hazard. Mater., 252, 19-28. https://doi.org/10.1016/j.jhazmat.2013.02.028

  9. Canal, C. & Ginebra, M.P. (2011). Fibre-reinforced calcium phosphate cements: A review. Journal of the Mechanical Behavior of Biomedical Materials, 4(8), 1658-1671. https://doi.org/10.1016/j.jmbbm.2011.06.023

  10. Cao, Y., Wang, K., Wang, X., Gu, Z., Ambrico, T., Gibbons, W., Fand, Q. & Talukder, T. (2017). Preparation of active carbons from corns talk for butanol vapor adsorption. Journal of Energy Chemistry, 26, 35-41. https://dx.doi. org/10.1016/j.jechem.2016.08.009.

  11. Carrillo Quijano, C. C., (2013). Producción de carbón activado y sílice a partir de cascarilla de arroz - una revisión. Scientia Et Technica, 18(2), 422-429.http:// dx.doi.org/10.22517/23447214.7855

  12. Chen, N., Han, C., Shi, R., Xu, L., Li, H., Liu, Y., Li, J. & Li, B. (2018). Carbon coated MoS2 nano sheets vertically grown on carbon cloth as efficient anodeforhigh-performance sodium ion hybrid capacitors. Electrochimica Acta, 283, 36-44. https://doi.org/10.1016/j.electacta.2018.06.082

  13. Chen, P.A., Cheng, H.C. & Wang, H.P. (2018). Activated carbon recycled frombitter-tea and palm shell wastes for capacitive desalination of saltwater. Journal of cleaner Production, 174, 927-932. https://doi.org/10.1016/j. jclepro.2017.11.034

  14. Coplas, F., Tarón, A. & González, R. (2017). Área superficial de carbones activados y modificados obtenidos del recurso agrícola Sacharum officinarum. Rev. Cienc. Agr., 34(2), 62-72. https://dx.doi.org/10.22267/rcia.173402.72.

  15. Cordero-Lanzac, F., García-Mateos, F. J., Rosas, J. M., Rodríguez-Mirasol, J. & Cordero, T. (2018). Flexible binderless capacitors based on P- and N-containing fibrous activated carbons from denim cloth waste. Carbon, 139, 599-608. https://doi.org/10.1016/j.carbon.2018.06.060

  16. Costa, P., Alves, J., Azevedo, D. & Bastos, M. (2017). Preparation of biomass-based activated carbons and their evaluation for biogas up grading purposes. Industrial Crops & Products, 109, 134-140. https://doi. org/10.1016/j.indcrop.2017.08.017.

  17. Duan, X., Srinivasakannan, C., Wang, X., Wang, F. & Liu, X. (2017). Synthesis of activated carbon fibers from cotton by microwave induced H3PO4 activation. Journal of the Taiwan Institute of Chemical Engineers, 70, 374-381. https://dx.doi.org/10.22267/rcia.173402.72.

  18. Estévez Mujica, C. F., Moreno-Pirajan, J. C. & Vargas, E. M. (2006). Obtención, caracterización y ensayo de telas de carbón activas. Revista de Ingeniería, 23, 68-75. https:// dx.doi.org/10.16924.

  19. Feng, L., Li, G., Zhang, S. & Zhang, Y. X. (2017). Decoration of carbon cloth by manganese oxides for flexible asymmetric. Ceramics International, 43, 8321-8328. http://dx.doi.org/10.1016/j.ceramint.2017.03.168

  20. Fernández, J., Bonastre, J., Molina, J., del Río, A. I. & Cases, F. (2017). Study on the specific capacitance of an activated carbon cloth modified with reduced graphene oxide and polyaniline by cyclic voltammetry. European Polymer Journal, 92, 194-203. http://dx.doi.org/10.1016/j. eurpolymj.2017.04.044

  21. García-Ruíz, J. P. & Díaz Lantada, A. (2018). 3D Printed Structures Filled with Carbon Fibers and Functionalized with Mesenchymal Stem Cell Conditioned Media as In Vitro Cell Niches for Promoting Chondrogenesis. Materials, 11(23), 1-14. https://doi.org/10.3390/ ma11010023

  22. Ghiabi, C., Ghaffarinejad, A., Kazemi, H. & Salahandish, R. (2018). In situ, one-step and co-electrodeposition of graphenes upported dendritic and spherical nanopalladium- silver bimetallic catalyst on carbon cloth for electro oxidation of methanol in alkaline media. Renewable Energy, 126, 1085-1092. https://doi. org/10.1016/j.renene.2018.04.040

  23. Gineys, M., Benoit, R., Cohaut, N., Béguin, F. & Delpeux- Ouldriane, S. (2016). Grafting of activated carbon cloths for selective adsorption. Applied Surface Science, 370, 522-527. http://dx.doi.org/10.1016/j.apsusc.2015.11.257

  24. Gineys, M., Benoit, R., Cohaut, N., Béguin, F. & Delpeux- Ouldriane, S. (2017). Behavior of activated carbon cloths used as electrode in electrochemical processes. Chemical Engineering Journal, 310, 1–12. http://dx.doi. org/10.1016/j.cej.2016.10.018

  25. Giraldo, L. & Moreno, J. C. (2004). Determinación de la entalpía de inmersión y capacidad de adsorción de un carbón activado en soluciones acuosas de plomo. Rev. Colomb. Quim., 33(2), 87-97. https://doi:10.15446/rev. colomb.quim

  26. Gudarzi, D., Ratchananusorn, W., Turunen, I., Heinonen, M. & Salmi, T. (2015). Factors affecting catalytic destruction of H2O2 by hydrogenation and decomposition over Pd catalyst supported on activated carbon cloth (ACC). CatalysisToday, 248, 69-79. http://dx.doi.org/10.1016/j. cattod.2013.12.050

  27. Guedidi, H., Reinert, L., Soneda, Y., Bellakhal, N. & Duclaux, L. (2014). Adsorption of ibuprofeno from aqueous solution on chemically surface-modified activated carbon cloths. Arabian Journal of Chemistry, 10, 83584-83594. http://dx.doi.org/10.1016/j.arabjc.2014.03.007

  28. Hernández, D., Jiménez, F., Mondragón, F. & López, D. (2007). Almacenamiento de Hidrógeno en carbones activados por oxidación con aire. Revista Energética, 37, 5-12. https://DOI:10.15446/energetica

  29. Hernández-Rodríguez, M., Otero-Calvis, A., Falcón- Hernández, J. & Yperman, Y. (2017). Physicochemical Characteristic of Activated Carbon of Coconut Shell Modified with HNO3. Rev. Cubana Quím., 29 (1), 26-38.

  30. Hong-mei, H., Phillips, G.J., Mikhalovsky, S.V. & Lloy, A.W. (2008). In vitro cytotoxicity assessment of carbon fabriccoated with calcium phosphate. New Carbon Materials, 23(2), 139–143. https://doi.org/10.1016/ S1872-5805(08)60017-7

  31. Hu, M., Zhang, Z., Atkinson, J.D., Rood, M.J., Song, L. & Zhang, Z. (2019). Porous materials for steady-state NO conversion: Comparisons of activated carbon fiber cloths, zeolites and metal-organic frameworks. Chemical Engineering Journal, 360, 89-96.https://doi. org/10.1016/j.cej.2018.11.102

  32. Huang, C. C. & Su, Y. J. (2010). Removal of copperions from waste water by adsorption/electrosorption on modified activated carbon cloths. Journal of Hazardous Material, 175, 477-483. https://doi.org/10.1016/j. jhazmat.2009.10.030

  33. J. Filippín, A., S. Luna, N., T. Pozzi, M. & D. Pérez, J., (2017). Obtención y caracterización de carbón activado a partir de residuos olivícolas y oleícolas por activación física. Avances en Ciencias e Ingeniería, 8(3), 59-71.

  34. Jeon, H., Jeong, J.M., Hong, S.B., Yang, M., Park, J., Kim, D.H., Hwang, S.Y. & Choi, B.G. (2018). Facile and fast microwave-assisted fabrication of activated and porous carbon cloth composites with graphene and MnO2 for flexible asymmetric supercapacitors. Electrochimica Acta, 280, 9-16. https://doi.org/10.1016/j.electacta.2018.05.108

  35. Kilic M., Apaydin-Varol, E. & Pütün, A. E. (2011). Adsorptive removal of phenol from aqueous solutions on activated carbon prepared from to bacco residues: Equilibrium kinetics and thermodynamics. J. Hazard. Mat., 189 (1-2), 397-403. https://doi.org/10.1016/j.jhazmat.2011.02.051

  36. Kim C., Srimuk, P., Lee, J. & Fleischmann, S. (2017). Influence of pore structure and cell voltage of activated carbon cloth as a versatile electrode material for capacitive deionization. Carbon, 122, 329-335. http:// dx.doi.org/10.1016/j.carbon.2017.06.077

  37. Kordek, K., Yin, H., Rutkowski, P. & Zhao, H. (2018). Cobalt-based composite film son electrochemically activated carbon cloth as high performance over all water splitting electrodes. International Journal of Hydrogen Energy, 44(1), 23-33.https://doi.org/10.1016/j. ijhydene.2018.02.095

  38. Kostoglou, N., Koczwara, C., Prehal, C., Terziyska, V., Babic, B., Matovic, B., Constantinides, G., Tampaxis, C., Charalambopoulou, G., Steriotis, T., Hinder, S., Baker, M., Polychronopoulou, K., Doumanidis, C., Paris, O., Mitterer, C. & Rebholz, C. (2017). Nanoporous activated carbon cloth as a versatile material for hydrogen adsorption, selective gas separation and electrochemical energy storage. Nano Energy, 40, 49-64. http://dx.doi. org/10.1016/j.nanoen.2017.07.056

  39. Kumita, M., Yamawaki, N., Shinohara, K., Higashi, H., Kodama, A., Kobayashi, N., Seto, T. & Otani, Y. (2018) Methanol adsorption behaviors of compression-molded activated carbon fiber with PTFE. International Journal of refrigeration, 2018, 127-135. https://doi.org/10.1016/j. ijrefrig.2018.07.036

  40. Laxman, K., ZarMyint, M. T., Al Abri, M., Sathe, P.,Dobretsov, S. & Duttaa, J. (2015). Desalination and disinfection of inland brackish ground water in a capacitive deionization cellusing nanoporous activated carbon cloth electrodes. Desalination, 362, 126-132. https://doi.org/10.1016/j. desal.2015.02.010

  41. Leyva Ramos, R., Díaz Flores, P. E., Guerrero Coronado, R. M., Mendoza Barrón, J. & Aragón Piña, A. (2004). Adsorción de Cd (II) en solución acuosa sobre diferentes tipos de fibras de carbón activado. Rev. Soc. Quím. Méx., 48, 196-202.

  42. Li, N., An, J., Wang, X., Wang, H., Lu, L. & Ren, J.R. (2017). Resin-enhanced rolling activated carbon electrode for efficient capacitive deionization. Desalination, 419, 20- 28. http://dx.doi.org/10.1016/j.desal.2017.05.035

  43. Lin, Y. H., Hsu, W. S., Chung, W. Y., Ko, T. H. & Lin, J. H. (2014). Evaluation of various silver-containing dressing on infected excision wound healing study. Journal of Materials Science: Materials in Medicine, 25, 1375- 1386. https://doi.org/10.1007/s10856-014-5152-1

  44. Ling, J., Zou, H., Yang, W., Chen, W., Lei, K. & Chen, S. (2018). Facile fabrication of polyaniline/molybdenum trioxide/activated carbon cloth composite for supercapacitors. Journal of Energy Storage, 20, 92-100. https://doi.org/10.1016/j.est.2018.09.007

  45. Liu, Y., Fan, Y.S. & Liu, Z.M. (2019). Pyrolysisofironphthalocyanine on activated carbon as highly efficientnon-noble metal oxygen reduction catalyst in microbial fuel cells. Chemical Engineering Journal, 361, 416-427. https://doi.org/10.1016/j. cej.2018.12.105

  46. López Peñalver, J., Linares-Fernández, J. L., de Araujo Farías, V., López-Ramón, M. V., Tassi, M., Oliver, F. J., Moreno- Castilla, C. & Ruiz de Almodóvar, J. M. (2009). Activated carbon cloth as support form esenchymalstem cell growth and differentiation toost eocytes. Carbon, 47, 3574-3577. https://doi.org/10.1016/j.carbon.2009.08.016

  47. López, D., Hoyos, J.A. & Mondragón, F. (2011). Adsorción catalítica de NO a baja temperatura sobre monolitos de carbón activado. Revista Facultad de Ingeniería Universidad de Antioquia, 57, 75-84.

  48. Lozano-Castello, D., Alcaniz-Monge, J., De la Casa-Lillo, M. A., Cazorla-Amorós, D., & Linares-Solano, A. (2002). Advances in the study of methane storage in porous carbonaceous materials. Fuel, 81(14), 1777–1803. https:// doi.org/10.1016/S0016-2361(02)00124-2

  49. Luna, D., González, A., Gordon, M., & Martín, N. (2007). Obtención de carbón activado a partir de cáscara de coco. Contactos, 67, 39-48.

  50. Masson, S., Gineys, M., Delupeux-Ouldriane, S., Reinert, L., Guittonneau, S., Beguin, F. & Duclaux, L. (2016). Single,binary, and mixture adsorption of nine organic contaminants onto a microporous and a microporous/ mesoporous activated carbon cloth. Microporous and Mesoporous Materials, 234, 24-34. http://dx.doi. org/10.1016/j.micromeso.2016.07.001

  51. Matatov-Meytal, Y. & Sheintuch, M., (2002). Review Catalytic fibers and cloths. Applied Catalysis A: General, 231, 1–16.

  52. Matovic, L. L., Vukelic, N. S., Jovanovic, U. D., Kumric, K. R., Krstic, J. B., Babic, B. M. & Dukic, A. B. (2016). Mechano chemically improved surface properties of activated carbon cloth for the removal of As(V) from aqueous solutions. Arabian Journal of Chemistry, (enimpresión ) http://dx.doi.org/10.1016/j.arabjc.2016.07.004

  53. Mena Aguilar, K. M., Amano, Y. & Machida, M. (2016). Ammonium persulfate oxidized activated carbonfiber as a high capacity adsorbent for aqueous Pb (II). Journal of Environmental Chemical Engineering, 4, 4644-4652. http://dx.doi.org/10.1016/j.jece.2016.10.028

  54. Menéndez-Díaz, J. A. & Martín-Gullón, I. (2006). Types of carbon adsorbents and their production. Interface Science and Technology, 7, 1-47. https://doi.org/10.1016/S1573- 4285(06)80010-4

  55. Min, B. H., Choi, J. H. & Jung, K. Y. (2018). Improved capacitived eionization of sulfonated carbon/titania hybrid electrode. Electrochimica Acta, 270, 543-551. https://doi.org/10.1016/j.electacta.2018.03.079

  56. Mohan, D., Singh, K.P. & Singh, V.K., (2006). Trivalentchromium removal from waste water usinglow cost activated carbon derived from agricultural waste material and activated carbon fabric cloth. JournalofHazardousMaterials B, 135, 280-295. https:// doi:10.1016/j.jhazmat.2005.11.075

  57. Myint, M.T.Z. & Dutta, Y. (2012). Fabrication of zinc oxide nanorods modified activated carbon cloth electrode for desalination of brackish water using capacitive deionization approach. Desalination, 305, 24-30. https:// doi.org/10.1016/j.desal.2012.08.010

  58. Myint, M.T.Z., Al-Harthi, S. H. & Dutta, Y. (2014). Brackish water desalination by capacitived eionization using zinc oxide micro/nanostructures grafted on activated carbon cloth electrodes. Desalination, 344, 236-242. https://doi. org/10.1016/j.desal.2014.03.037

  59. Navarro, P. & Vargas, C. (2010). Efecto de las propiedades físicas del carbón activado en la adsorción de oro desde medio cianuro. Revista de Metalurgia, 46(3), 227-239. https://doi:10.3989/revmetalm.0929

  60. Nieto-Delgado, C., Partida-Gutiérrez, D. & Rangel-Méndez, J.R. (2019). Preparation of activated carbon cloths from renewable natural fabrics and their performance during the adsorption of model organic and inorganic pollutants in water. Journal of Cleaner Production, 213, 650-658. https://doi.org/10.1016/j.jclepro.2018.12.184

  61. Ocampo-Pérez, R., Orellana-García, F., Sánchez-Polo, M., Rivera-Utrilla, J., Velo-Gala, I., López-Ramón, M.V. & Álvarez-Merino, M.A. (2013). Nitromidazoles adsorptionon activated carbon cloth from aqueous solution. Journal of Colloid and Interface Science, 401, 116-124. http://dx.doi.org/10.1016/j.jcis.2013.03.038

  62. Oh, H. J., Lee, J. H., Ahn, H. J., Jeong, Y., Kim, Y. J. & Chi, C. S. (2006). Nanoporous activated carbon cloth for capacitived eionization of aqueous solution. Thin Solid Films, 515, 220-225. https://doi.org/10.1016/j. tsf.2005.12.146

  63. Oladunni, J., Zain, J.H., Hai, A., Banat, F., Bharath, G. & Alhseinat, E. (2018). A comprehensive review on recently developed carbon based nanocomposites for capacitived eionization: From theory to practice. Separation and Purification Technology, 207, 291-320. https://doi. org/10.1016/j.seppur.2018.06.046

  64. Ospina-Guarín, V. M., Buitrago-Sierra, R. & López-López, D. P. (2014). Preparation and characterization of activated carbon from castor de-oiled cake. Tecnológicas, 17(32), 75-84.

  65. Ouyang, T., Cheng, K., Yang, F., Jiang, J., Yan, J., Zhu, K., Ye, K.,Wang, G., Zhou, L. & Cao, D. (2018). A general insituetching and synchronousheteroatom doping strategy to boost the capacitive performance of commercial carbon fiber cloth. Chemical Engineering Journal, 335, 638-646. https://doi.org/10.1016/j.cej.2017.11.009

  66. Peng, C. W. & Lin, H. C. (2017). Adsorption for Dyeson Activation Carbons from Japanese Cedar Wood Prepared by Precarbonization and Two-stage Composite Activations with Wood Ash and Steam. International Journalof Chemical Engineering and Applications, 8(4), 277-285. https://doi:10.18178/ijcea.2017.8.4.670

  67. Rangel-Méndez, J.R. & Streat, M., (2002). Adsorption of cadmium by activated carbon cloth: influence of surface oxidation and solution pH. Water Research, 36, 1244– 1252.https://doi.org/10.1016/S0043-1354(01)00343-8

  68. Robles Andrade, S., Silva Rodrigo, R., García Alamilla, R., Ramos Galván, C. E., Carrizales Martínez, G., Sandoval Robles, G. & Castillo Mares, A. (2006). Carbón activado modificado como soporte para catalizadores prototipo de HDS. Revista Mexicana de Ingeniería Química, 5(3), 279-284.

  69. Rodríguez, G., Giraldo, L. & Moreno, J. C. (2009). Immersion enthalpies of activated carbon cloths as physicalchemistry characterization parameter. Rev. Colom. Quim., 38(3), 435-445.

  70. Rodríguez, G., Giraldo, L. & Moreno, J.C. (2007). Preparation and characterization of activated carbon cloths influence of precursor of cotton. Rev. Colom. Quim., 36(1), 43-53.

  71. Ryoo, M.W., Kim, J.H. & Seo, G. (2003). Role of titania incorporated on activated carbon cloth for capacitive deionization of NaCl solution. Journal of colloid and interface science, 264, 414-419. https://doi:10.1016/ S0021-9797(03)00375-8

  72. Sevilla, M., Fuertes, A. B. & Mokaya, R. (2011). Preparation and hydrogen storage capacity of highly porous activated carbon materials derived from polythiophene. International Journal of Hydrogen Energy, 36, 15658- 15663. https://doi:10.1016/j.ijhydene.2011.09.032

  73. Sieben, J. M., Morallón, E. & Cazorla-Amorós, D. (2013). Flexible ruthenium oxide-activated carbon cloth composite prepared by simple electrodepositation methods. Energy, 58, 519-526. http://dx.doi. org/10.1016/j.energy.2013.04.077

  74. Song, X., Liu, H., Cheng, L. & Qu, Y. (2010). Surface modification of coconut-based activated carbon by liquidphaseoxidation and its effects on lead ion adsorption. Desalination, 255(1-3),78-83. https://doi.org/10.1016/j. desal.2010.01.011

  75. Thamiselvan, A., Govindan, K., Samson Nesaraj, A., Uma Maheswan, S., Oren, Y., Noel, M. & James, E. J. (2018). Investigation on the effect of organic dye molecules on capacitive deionization of sodium sulfate salt solution using activated carbon cloth electrodes. Electrochimica Acta, 279, 24-33. https://doi.org/10.1016/j. electacta.2018.05.053

  76. Tongpoothorn, W., Sriuttha, M., Homchan, P., Chanthai, S. & Ruangviriyacha, C. (2011). Preparation of activated carbon derived from Jatropha curcas fruit Shell by simple thermochemical activation and characterization of their physicochemical properties. Chem. Eng. Res. Des., 89(3), 335-340. https://doi.org/10.1016/j.cherd.2010.06.012.

  77. Tripathi, N. K., Singh, V. V., Sathe, M., Thakare V. B. & Singh, B. (2018). Activated Carbon Fabric: An Adsorbent Material for Chemical Protective Clothing. Defence Science Journal, 68(1), 83-90. https://DOI:10.14429/ dsj.68.11734

  78. Wang, H., Deng, J., Xu, C., Chen, Y., Xu, F., Wang, J. & Wang, Y. (2017). Ultramicroporous carbon cloth for flexible energy storage with high a real capacitance. Energy Storage Materials, 7, 216-221. http://dx.doi. org/10.1016/j.ensm.2017.03.002

  79. Wei, Y., Wang, R., Meng, L., Wang, Y., Li, G., Xin, S., Zhao, X. & Zhang, K. (2017). Hydrogen generation from alkaline NaBH4 solution using a dandelion-like Co– Mo–B catalyst supported on carbon cloth. International Journal of Hydrogen Energy, 42(15), 9945-9951. https:// doi.org/10.1016/j.ijhydene.2016.12.130

  80. Yoda, T., Shibuya, K. & Myoubudani, H. (2018). Preparation of activated carbon fibers from mixtures of cotton and polyester fibers. Measurement, 125, 572-576. https://doi. org/10.1016/j.measurement.2018.05.044

  81. Zhang, Ch., He, D., Ma, J., Tang, W. & Waite, T.D. (2018). Faradaic reactions in capacitived eionization (CDI) - problems and posibilities: A review. Water Research, 128, 314-330. https://doi.org/10.1016/j.watres.2017.10.024

  82. Zhao, F., Rahunen, N., Varcoe, J. R., Chandra, A., Avignone- Rossa, C., Thumser, A. E. & Slade, R. C. (2008). Activated carbon cloth as anode for sulfate removal in a microbial fuel cell. Environ. Sci. Technol., 42 (13), 4971- 4976. https://DOI:10.1021/es8003766

  83. Zou, N., Nie, Q., Zhang, X., Zhang, G., Wang, J. & Zhang, P. (2019). Electrothermal regeneration by Joule heat effect on carbon cloth based MnO2 catalyst for long-term formaldehyde removal. Chemical Engineering Journal, 357, 1-10. https://doi.org/10.1016/j.cej.2018.09.117




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2019;22

ARTíCULOS SIMILARES

CARGANDO ...