medigraphic.com
ENGLISH

Revista Cubana de Obstetricia y Ginecología

ISSN 1561-3062 (Digital)
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2019, Número 3

<< Anterior Siguiente >>

Revista Cubana de Obstetricia y Ginecología 2019; 45 (3)


Vías de señalización celular implicadas en la carcinogénesis cervical

Heredia RD, Herrera MCM, Fernández CD
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 58
Paginas:
Archivo PDF: 382.57 Kb.


PALABRAS CLAVE

vías de señalización, TLRs, Wnt/β-catenina, PI3K/Akt, carcinogénesis cervical.

RESUMEN

Introducción: El Virus de Papiloma Humano se considera un factor clave en el desarrollo de lesiones cérvico uterinas. No obstante, la infección per se no es suficiente para desarrollar todos los eventos carcinogénicos, de manera que estos podrían estar regulados por vías de señalización celular. Las señales transmitidas hacia el interior de la célula, se producen a través de cascadas de señalización, en las que intervienen numerosas proteínas que ganan y/o pierden su actividad biológica, regulando así el metabolismo, la transcripción y traducción de genes.
Objetivo: Proveer información actualizada sobre las vías de señalización TLRs, Wnt/β-catenina y PI3K/Akt implicadas en la carcinogénesis cervical.
Métodos: Se realizó una revisión de la literatura especializada mediante artículos originales y revisiones publicadas en bases de datos pertenecientes a los sitios web PubMed, Google Scholar, EBSCO y NCBI, en idiomas español e inglés.
Resultados: Se constató que la vía TLR juega un rol clave en el combate a virus, bacterias y otras infecciones, además de poseer actividad inmune antitumoral. La vía Wnt/β-catenina participa en varios procesos biológicos como la diferenciación, migración y adhesión celular, mientras que, PI3K/Akt está relacionada con el crecimiento, la motilidad y la supervivencia celular.
Conclusiones: La activación o desregulación de algunos componentes de estas vías están implicadas en la proliferación incontrolada de células tumorales, evento importante en la carcinogénesis cervical.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Santos E. Biología molecular del cáncer: del laboratorio a la clínica. Libro Editado por la Real Academia de Medicina de Salamanca. CIC & IBMCC 2013. Consultado en septiembre de 2018. Disponible en: http://www.cicancer.org/es/cascadas-y-redes-de-senalizacion-celular-rutas-y-redes

  2. Cruz MdCL, Mendiola AV, Soto Cruz I. Ciclo celular: Mecanismos de regulación. Vertientes Revista Especializada en Ciencias de la Salud [en línea]. 2014;17(2):98-107. Disponible en: https://scholar.google.com.cu/scholar?hl=es&as_sdt=0%2C5&q=Ciclo+celular%3A+Mecanismos+de+regulaci%C3%B3n&btnG=

  3. Duronio RJ, Xiong Y. Signaling pathways that control cell proliferation. Cold Spring Harbor perspectives in biology. 2013;5(3):a008904. DOI: 10.1101/cshperspect.a008904. http://cshperspectives.cshlp.org/content/5/3/a008904.full.pdf

  4. Martínez Benítez EJ. Biología molecular del VPH tipo 16 y su asociación al cáncer cérvico uterino. Research Gate. 2018. DOI: 10.13140/RG.2.2.31448.6016. https://www.researchgate.net/publication/323738251_Biologia_molecular_del_VPH_tipo_16_y_su_asociacion_al_cancer_cervico_uterino5. Wright A, Howitt BE, Myers AP, Dahlberg SE, Palescandolo E, Hummelen PV. Oncogenic mutations in cervical cancer: genomic differences between adenocarcinomas and squamous cell carcinomas of the cervix. Cancer [en línea]. 2013;119(21):3776-83. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3972000/pdf/nihms564810.pdf

  5. Du B, Jiang QL, Cleveland J, Liu BR, Zhang D. Targeting Toll-like receptors against cancer. J Cancer Metastasis Treat. 2016;2:463-70 DOI: 10.20517/2394-4722.2016.62. https://scholar.google.com.cu/scholar?hl=es&as_sdt=0%2C5&q=Targeting+Toll-like+receptors+against+cancer.+J+Cancer+Metastasis+Treat.+2016%3B2%3A463-70++&btnG=

  6. O'Neill LA, Golenbock D, Bowie AG. The history of Toll-like receptors—redefining innate immunity. Nat Rev Immunol. [en línea]. 2013;13:453-60. Disponible en: https://scholar.google.com.cu/scholar?hl=es&as_sdt=0%2C5&q=The+history+of+Toll-like+receptors%E2%80%94redefining+innate+immunity&btnG=

  7. Sweta S, Damodar G. Role of Toll like Receptor(s) in Tumor Biology. J Tumor Med Prev. [en línea]. 2017;1(1):554-5. Disponible en: https://www.researchgate.net/profile/Dr_Damodar_Gupta/publication/316717389_Role_of_Toll_like_Receptors_in_Tumor_Biology/links/590f438da6fdccad7b1266cb/Role-of-Toll-like-Receptors-in-Tumor-Biology.pdf

  8. Yang X, Cheng Y, Li C. The role of TLRs in cervical cancer with HPV infection: a review. Signal Transduction and Targeted Therapy [en línea]. 2017;2:e17055. Disponible en: https://www.nature.com/articles/sigtrans201755

  9. Hasimu A, Ge L, Li QZ, Zhang RP, Guo X. Expressions of Toll-like receptors 3, 4, 7, and 9 in cervical lesions and their correlation with HPV16 infection in Uighur women. Chin J Cancer [en línea]. 2011;30:344-50. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4013399/

  10. Yu L, Wang L, Li M, Zhong J, Wang Z, Chen S. Expression of toll-like receptor 4 is down-regulated during progression of cervical neoplasia. Cancer Immunol Immunother. [en línea]. 2010;59:1021-28. Disponible en: http://web.a.ebscohost.com/ehost/pdfviewer/pdfviewer?vid=0&sid=5b2da104-c6f6-4d15-9715-c6d6ae840b46%40sdc-v-sessmgr0412. Wang Y, Weng Y, Shi Y, Xia X, Wang S, Duan H. Expression and functional analysis of Toll-like receptor 4 in human cervical carcinoma. J Membr Biol [en línea]. 2014;247:591-9. Disponible en: https://link.springer.com/article/10.1007/s00232-014-9675-7

  11. Xiao J, Guo Q, Wang X, Xie F, Zhang H, Sui L. Study on the expression and signification of TLR4/NO pathway in cervical tumorogenesis with high risk HPV infection. Zhonghua Fu Chan Ke Za Zhi [on line]. 2015;50:41-7. Disponible en: https://europepmc.org/abstract/med/25877424

  12. Wang J, Lin D, Peng H, Shao J, Gu J. Cancer-derived immunoglobulin G promotes LPS-induced proinflammatory cytokine production via binding to TLR4 in cervical cancer cells. Oncotarget. 2014;5:9727-43. DOI: 10.18632/oncotarget.2359. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259433/

  13. Cheng Y, Chen G, Wang X, Huang Y, Ding J, Huang J, et al. TLR4 may accelerate hypoxia reaction to promote the occurrence and progress of cervical lesions by infected pathogenic microorganisms other than HPV. J Cancer Ther. [on line]. 2013;4:549-53. Disponible en: http://file.scirp.org/pdf/JCT_2013041517104684.pdf

  14. Daud II, Scott ME, Ma Y, Shiboski S, Farhat S, Moscicki AB. Association between toll-like receptor expression and human papillomavirus type 16 persistence. Int J Cancer. [en línea]. 2011;128:879-86. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2952342/

  15. Lee JW, Choi JJ, Seo ES, Kim MJ, Kim WY, Choi CH, et al. Increased toll-like receptor 9 expression in cervical neoplasia. Mol Carcinog. 2007;46:941-7. Disponible en: https://onlinelibrary.wiley.com/doi/pdf/10.1002/mc.20325

  16. Hasan UA, Bates E, Takeshita F, Biliato A, Accardi R, Bouvard V, et al. TLR9 expression and function is abolished by the cervical cancer-associated human papillomavirus type 16. J Immunol. [on line]. 2007;178:3186-97. Disponible en: http://www.jimmunol.org/content/jimmunol/178/5/3186.full.pdf

  17. Cannella F, Pierangeli A, Scagnolari C, Cacciotti G, Tranquilli G, Stentella P, et al. TLR9 is expressed in human papillomavirus-positive cervical cells and is over-expressed in persistent infections. Immunobiology. [en línea]. 2015;220:363-8. Disponible en: https://www.sciencedirect.com/science/article/pii/S0171298514002034

  18. de Matos LG, Candido EB, Vidigal PV, Bordoni PH, Lamaita RM, Carneiro MM, et al. Association between Toll-like receptor and tumor necrosis factor immunological pathways in uterine cervical neoplasms. Tumori. 2016;103:81-6. Disponible en: https://journals.sagepub.com/doi/full/10.5301/tj.5000576

  19. Fehri E, Ennaifer E, Ardhaoui M, Ouerhani K, Laassili T, Bel Haj Rhouma R, et al. Expression of Toll-like Receptor 9 Increases with Progression of Cervical Neoplasia in Tunisian Women - A Comparative Analysis of Condyloma, Cervical Intraepithelial Neoplasia and Invasive Carcinoma. Asian Pacific Journal of Cancer Prevention, Asian Pacific Education Press Ltd; 2014;15(15):6145-50. Disponible en: https://scholar.google.com.cu/scholar?hl=es&as_sdt=0%2C5&q=Expression+of+Toll-like+Receptor+9+Increases+with+Progression+of+Cervical+Neoplasia+in+Tunisian+Women+-+A+Comparative+Analysis+of+Condyloma&btnG=

  20. Niehrs C. The complex world of WNT receptor signalling. Nature Reviews Molecular Cell Biology. 2012;13:767-9. doi:10.1038/nrm3470. Disponible en: http://web.a.ebscohost.com/ehost/pdfviewer/pdfviewer?vid=0&sid=80645f1a-fade-4142-bc91-867f36cda63a%40sdc-v-sessmgr02

  21. Duchartre Y, Kim JM, Kahn M. The Wnt signalling pathway in cancer. Critical Reviews in Oncology/Hematology [en línea]. 2016;99:141-9. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5853106/

  22. Mantilla C, Suárez Mellado I, Duque Jaramillo A, Navas MC. Mecanismos de señalización por β-catenina y su papel en la carcinogénesis. Ces Medicina [en línea]. 2015;29(1). Disponible en: http://scholar.google.com.cu/scholar_url?url=http%3A%2F%2Frevistas.ces.edu.co%2Findex.php%2Fmedicina%2Farticle%2Fdownload%2F109%2F2394&hl=es&sa=T&oi=gga&ct=gga&cd=0&d=7313555211479020471&ei=aXRHXMGtLtKTmwHz25vQBA&scisig=AAGBfm2x__81KHRH7Xdm06kWR08jsAUsAA&nossl=1&ws=1024x634&at=

  23. Persad S, Troussard AA, McPhee TR, Mulholland DJ, Dedhar S. Tumor suppressor PTEN inhibits nuclear accumulation of beta-catenin and T cell/lymphoid enhancer factor 1-mediated transcriptional activation. J Cell Biol. [en línea]. 2001;153(6):1161-74. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2192018/pdf/0101058.pdf

  24. Haupt S, Raghu D, Haupt Y. Mutant p53 drives cancer by subverting multiple tumor suppression pathways. Front Oncol. 2016;6:12. DOI:10.3389/fonc.2016.00012. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4728204/pdf/fonc-06-00012.pdf

  25. Uren A, Fallen S, Yuan H, Usubutun A, Kucukali T, Schlegel R, et al. Activation of the Canonical Wnt Pathway during Genital Keratinocyte Transformation: A Model for Cervical Cancer Progression. Cancer Res. [en línea]. 2005;65:6199-206. Disponible en: http://cancerres.aacrjournals.org/content/canres/65/14/6199.full.pdf

  26. Shinohara A, Yokoyama Y, Wan X, Takahashi Y, Mori Y, Takami T, et al. Cytoplasmic/nuclear expression without mutation of exon 3 of the beta-catenin gene is frequent in the development of the neoplasm of the uterine cervix. Gynecol Oncol [en línea]. 2001:450. Disponible en: https://scholar.google.com.cu/scholar?hl=es&as_sdt=0%2C5&q=Cytoplasmic%2Fnuclear+expression+without+mutation+of+exon+3+of+the+beta-catenin+gene+is+frequent+in+the+development+of+the+neoplasm+of+the+uterine+cervix&btnG=

  27. Guerra F, Rocher A, Angeleri A, Díaz LB, Mendeluk G, Quintana S, et al. Moléculas de adhesión y proteínas oncogénicas de virus de papiloma humano en la progresión de cáncer de cuello uterino. B y PC; 2018;82(2):30-5. (ISSN 1515-6761 Ed. Impresa; ISSN 2250-5903 Ed. CD-ROM)

  28. Lee J, Yoon YS, Chung JH. Epigenetic silencing of the WNT antagonist DICKKOPF-1 in cervical cancer cell lines. Gynecologic Oncology [en línea]. 2008;109:270-4. Disponible en: https://www.sciencedirect.com/science/article/pii/S0090825808000929

  29. Pérez Plasencia C, Vázquez Ortíz G, López Romero R, Pina Sánchez P, Moreno J, Salcedo M. Genome wide expression analysis in HPV16 Cervical Cancer: identification of altered metabolic pathways. Infectious Agents and Cancer. [en línea]. 2007;2:16. Disponible en: https://infectagentscancer.biomedcentral.com/articles/10.1186/1750-9378-2-16

  30. Wang Y, Nathans J. Tissue/planar cell polarity in vertebrates: new insights and new questions. Development [en línea]. 2007;134:647-58. Disponible en: phttp://dev.biologists.org/content/develop/134/4/647.full.pdf

  31. Yayun Jiang, Wei Ren, Weijia Wang, Jing Xia, Liyao Gou, Mengyao Liu, et al. Inhibitor of β-catenin and TCF (ICAT) promotes cervical cancer growth and metastasis by disrupting E-cadherin/β-catenin complex. Oncology Reports [en línea]. 2017;38:2597-606. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5780012/pdf/or-38-05-2597.pdf

  32. Qiqi Wang, Qiong Qin, Ran Song, Chunjuan Zhao, Hua Liu, Ying Yang. NHERF1 inhibits beta-catenin-mediated proliferation of cervical cancer cells through suppression of alpha-actinin-4 expression. Cell Death and Disease. 2018;9:668. DOI: 10.1038/s41419-018-0711-x. Disponible en: https://www.nature.com/articles/s41419-018-0711-x

  33. Lu Li, Wen Ting Yang, Peng Sheng Zheng, Xiao Fang Liu. SOX17 restrains proliferation and tumor formation by down-regulating activity of the Wnt/ß-catenin signaling pathway via trans-suppressing ß-catenin in cervical cancer. Cell Death and Disease. 2018;9:741. doi:10.1038/s41419-018-0782-8. https://www.nature.com/articles/s41419-018-0782-8

  34. Ayala Calvillo E, Mojica Vázquez LH, García Carrancá A, González Maya L. Wnt/β catenin pathway activation and silencing of the APC gene in HPV positive human cervical cancer derived cells. Molecular Medicine Reports [en línea]. 2018;17:200-8. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5780127/pdf/mmr-17-01-0200.pdf

  35. Ramos Solano M, Álvarez Zavala M, García Castro B, Jave Suárez LF, Aguilar Lemarroy A. Vía de señalización Wnt y cáncer cervicouterino. Revista Médica del Instituto Mexicano del Seguro Social [en línea]. 2015;53(S2):218-24. Disponible en: http://www.medigraphic.com/pdfs/imss/im-2015/ims152p.pdf

  36. Lan K, Zhao Y, Fan Y, Ma B, Yang S, Liu Q, et al. Sulfiredoxin may promote cervical cancer metastasis via Wnt/β-catenin signaling pathway. International Journal of Molecular Sciences [en línea]. 2017;18(5):917. Disponible en: https://www.mdpi.com/1422-0067/18/5/917/htm

  37. Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet [en línea]. 2006;7:606-19. Disponible en: http://web.a.ebscohost.com/ehost/pdfviewer/pdfviewer?vid=0&sid=1fd27a17-18da-4d61-a791-b1b03397086f%40sessionmgr4007

  38. González E, McGraw TE. The Akt kinases: isoform specificity in metabolism and cancer. Cell Cycle. 2009;8:2502-508. Disponible en: https://www.tandfonline.com/doi/pdf/10.4161/cc.8.16.9335

  39. Kandel ES, Hay N. The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. Exp Cell Res [en línea]. 1999;253:210-29. Disponible en: https://www.researchgate.net/profile/Eugene_Kandel2/publication/12721195_The_regulation_and_activities_of_the_multifunctional_serinethreonine_kinase_AktPKB/links/5a7f100b4585154d57d72f45/The-regulation-and-activities-of-the-multifunctional-serine-threonine-kinase-Akt-PKB.pdf

  40. Parrizas M, Saltiel AR, Leroith D. Insulin-like growth factor 1 inhibits apoptosis using the phosphatidylinositol 3'-kinase and mitogen-activated protein kinase pathways. J Biol Chem. [en línea]. 1997;272:154-61. Disponible en: http://www.jbc.org/content/272/1/154.full.pdf

  41. Martini M, De Santis MC, Braccini l, Gulluni F, Hirsch E. PI3K/AKT signaling pathway and cancer: an updated review. Ann Med. [en línea]. 2014;46:372-83. Disponible en: http://web.a.ebscohost.com/ehost/pdfviewer/pdfviewer?vid=0&sid=6b88dd95-07bc-4d0e-ba16-4df434a4b8d5%40sessionmgr4009

  42. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. [en línea]. 2012;149:274-93. Disponible en: https://www.sciencedirect.com/science/article/pii/S0092867412003510

  43. Tan HK, Moad AI, Tan ML. The mTOR Signalling Pathway in Cancer and the Potential mTOR Inhibitory Activities of Natural Phytochemicals. Asian Pacific Journal Cancer Prevention. [en línea]. 2014;15(16):6463-75. Disponible en: http://medicinabiomolecular.com.br/biblioteca/pdfs/Cancer/acido-galico-curcumina-resveratrol-diosgenina-roma-egcg.pdf

  44. Rashmi R, Deselm C, Helms C, Bowcock A, Rogers BE, Rader J. AKT Inhibitors Promote Cell Death in Cervical Cancer through Disruption of mTOR Signaling and Glucose Uptake. PLOS One. 2014;9(4):e92948. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0092948

  45. Black JD, López S, Cocco E, Bellone S, Altwerger G, Schwab CL, et al. PIK3CA oncogenic mutations represent a major mechanism of resistance to trastuzumab in HER2/neu overexpressing uterine serous carcinomas. British J Cancer. [en línea]. 2015;113:1020-6. Disponible en: https://www.nature.com/articles/bjc2015306

  46. McIntyre JB, Wu JS, Craighead PS, Phan T, Köbel M, Lees-Miller SP, et al. PIK3CA mutational status and overall survival in patients with cervical cancer treated with radical chemoradiotherapy. Gynecologic Oncology. [en línea]. 2013;128:409-14. Disponible en: https://www.sciencedirect.com/science/article/pii/S0090825812009675

  47. Lou H, Villagran G, Boland JF, Im KM, Polo S, Zhou W, et al. Genome Analysis of Latin American Cervical Cancer: Frequent Activation of the PIK3CA Pathway. Clinical Cancer Research [en línea]. 2015;21:5360-70. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4668220/pdf/nihms701853.pdf

  48. Ilagan E, Manning BD. Emerging role of mTOR in the response to cancer therapeutics. Trends Cancer. 2016;2(5):241-51. DOI:10.1016/j.trecan.2016.03.008. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5033243/

  49. Song MS, Salmena L, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol. [en línea]. 2012;13(5):283-96. Disponible en: https://www.researchgate.net/file.PostFileLoader.html?id=55c4baa55dbbbdae958b464c&assetKey=AS%3A273827265744901%401442296915353

  50. Juric D, Castel P, Griffith M, Griffith OL, Won HH, Ellis H, et al. Convergent loss of PTEN leads to clinical resistance to a PI3Kα inhibitor. Nature. [en línea]. 2015;518(7538):240-4. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4326538/

  51. Hanker AB, Pfefferle AD, Balko JM, Kuba MG, Young CD, Sánchez V, et al. Mutant PIK3CA accelerates HER2-driven transgenic mammary tumors and induces resistance to combinations of anti-HER2 therapies. Proc Natl Acad Sci USA [en línea]. 2013;110:14372-7. Disponible en: https://www.pnas.org/content/pnas/110/35/14372.full.pdf

  52. Mollon L, Aguilar A, Anderson E, Dean J, Davis L, Warholak T, et al. A systematic literature review of the prevalence of PIK3CA mutations and mutation hotspots in HR+/HER2-metastatic breast cancer. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res. [en línea]. 2018;78 (13 Suppl): Abstract nr 1207. Disponible en: http://cancerres.aacrjournals.org/content/78/13_Supplement/1207.short

  53. Thorpe LM, Spangle JM, Ohlson CE, Cheng H, Roberts TM, Cantley LC, et al. PI3K-p110α mediates the oncogenic activity induced by loss of the novel tumor suppressor PI3K-p85α. Proceedings of the National Academy of Sciences. 2017;114(27):7095-100. Disponible en: https://www.pnas.org/content/114/27/7095.full

  54. Zhang L, Wu J, Ling MT, Zhao L, Zhao KN. The role of the PI3K/Akt/mTOR signalling pathway in human cancers induced by infection with human papillomaviruses. Mol Cancer. [en línea]. 2015;14:87. Disponible en: https://molecular cancer.biomedcentral.com/articles/10.1186/s12943-015-0361-x

  55. Tingting Feng, Lin Zheng, Feng Liu, Xiaoying Xu, Sheng Mao, Xiao Wang, et al. Growth factor progranulin promotes tumorigenesis of cervical cancer via PI3K/Akt/mTOR signaling pathway. Oncotarget. [en línea]. 2016;7(36):58381-95. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5295437/

  56. Xue Bai, Yaxin Ma, Guobin Zhang. Butein suppresses cervical cancer growth through the PI3K/AKT/mTOR pathway. Oncology Reports. [en línea]. 2015; 33:3085-92. Disponible en: http://web.a.ebscohost.com/ehost/pdfviewer/pdfviewer?vid=0&sid=093cfb3a-e390-4520-9499-c2d8beb520fa%40sessionmgr4008

  57. Wenqian Zhang, Zhengai Xiong, Tianqin Wei, Qiumeng Li, Ying Tan, Li Ling. Nuclear factor 90 promotes angiogenesis by regulating HIF-1±/VEGF-A expression through the PI3K/Akt signaling pathway in human cervical cancer. Cell Death & Disease [en línea]. 2018;9(276). Disponible en: https://www.nature.com/articles/s41419-018-0334-2

  58. Cristian Massacesi C, Di Tomaso E, Urban P, Germa C, Quadt C. Trandafir L. PI3K inhibitors as new cancer therapeutics: implications for clinical trial design. Oncotargets and Therapy. [en línea]. 2016:9. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4708174/




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Revista Cubana de Obstetricia y Ginecología. 2019;45

ARTíCULOS SIMILARES

CARGANDO ...