medigraphic.com
ENGLISH

Salud Pública de México

Instituto Nacional de Salud Pública
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2020, Número 2

<< Anterior Siguiente >>

salud publica mex 2020; 62 (2)


Distribución espacial de las concentraciones y carga de manganeso en el polvo urbano de la Ciudad de México

Aguilera A, Bautista F, Gogichaichvili A, Gutiérrez-Ruiz ME, Ceniceros-Gómez ÁE, López-Santiago NR
Texto completo Cómo citar este artículo Artículos similares

Idioma: Ingles.
Referencias bibliográficas: 20
Paginas: 147-155
Archivo PDF: 1503.61 Kb.


PALABRAS CLAVE

manganeso, contaminación ambiental, polvo.

RESUMEN

Objetivo. Obtener una primera aproximación sobre la distribución espacial de la contaminación por manganeso (Mn) en la Ciudad de México. Se analizó la concentración y carga de Mn en el polvo de la calle para identificar las áreas más contaminadas. Material y métodos. 482 muestras de polvo de la calle fueron analizadas con espectroscopía de emisión por plasma de acoplamiento inductivo. Se calculó el factor de contaminación, índice de geoacumulación, y las interpolaciones espaciales del indicador kriging. Resultados. Existe una ligera influencia de actividades antropogénicas en el contenido de Mn del polvo de la calle. Los niveles más altos de contaminación por concentración (Igeo=no contaminado a moderadamente contaminado) se agruparon en el norte (industrial) y centro (comercial y de alto tráfico) de la ciudad. Las áreas con las cargas de Mn más altas estuvieron al este y noroeste (Igeo=moderadamente contaminado), donde había más polvo. Conclusiones. Estos resultados servirán como punto de referencia para evaluar variaciones futuras en el contenido de Mn en la Ciudad de México.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Cortez-Lugo M, Rodríguez-Dozal S, Rosas-Pérez I, Alamo-Hernández U, Riojas-Rodríguez H. Modeling and estimating manganese concentrations in rural households in the mining district of Molango, Mexico. Environ Monit Assess. 2015;187(12):752 [cited April, 2019]. Available from: http://link. springer.com/10.1007/s10661-015-4982-8

  2. Menezes-Filho JA, Fraga de Souza KO, Gomes Rodrigues JL, Ribeiro dos Santos N, Bandeira M de J, Koin NL, et al. Manganese and lead in dust fall accumulation in elementary schools near a ferromanganese alloy plant. Environ Res. 2016;148:322-9. https://doi.org/10.1016/j.envres.2016.03.041

  3. Rodrigues JLG, Araújo CFS, dos Santos NR, Bandeira MJ, Anjos ALS, Carvalho CF, et al. Airborne manganese exposure and neurobehavior in school-aged children living near a ferro-manganese alloy plant. Environ Res. 2018;167:66-77. https://doi.org/10.1016/j.envres.2018.07.007

  4. Röllin HB, Nogueira CMCA. Manganese: Environmental Pollution and Health Effects. In: Nriagu JO, ed. Reference Module in Earth Systems and Environmental Sciences. Johannesburg, South Africa: Elsevier, 2019:617-29 [cited April, 2019]. Available from: https://linkinghub.elsevier.com/retrieve/ pii/B9780124095489115301

  5. Gunier RB, Jerrett M, Smith DR, Jursa T, Yousefi P, Camacho J, et al. Determinants of manganese levels in house dust samples from the CHAMACOS cohort. Sci Total Environ. 2014;497-498:360-8 [cited April, 2019]. Available at: https://linkinghub.elsevier.com/retrieve/pii/ S004896971401170X

  6. Röllin H, Mathee A, Levin J, Theodorou P, Wewers F. Blood manganese concentrations among first-grade schoolchildren in two South African cities. Environ Res. 2005;97(1):93-9. https://doi.org/10.1016/j. envres.2004.05.003

  7. Abbott PJ. Methylcyclopentadienyl manganese tricarbonyl (MMT) in petrol: The toxicological issues. Sci Total Environ. 1987;67(2-3):247-55. https://doi.org/10.1016/0048-9697(87)90215-4

  8. Smith D, Woodall GM, Jarabek AM, Boyes WK. Manganese testing under a clean air act test rule and the application of resultant data in risk assessments. Neurotoxicology. 2018;64:177-84. https://doi.org/10.1016/j. neuro.2017.06.014

  9. Roth JA. Homeostatic and toxic mechanisms regulating manganese uptake, retention, and elimination. Biol Res. 2006;39(1):45-57. https://doi. org/10.4067/S0716-97602006000100006

  10. Calderón-Garcidueñas L, Reynoso-Robles R, Pérez-Guillé B, Mukherjee PS, Gónzalez-Maciel A. Combustion-derived nanoparticles, the neuroenteric system, cervical vagus, hyperphosphorylated alpha synuclein and tau in young Mexico City residents. Environ Res. 2017;159:186-201. https://doi. org/10.1016/j.envres.2017.08.008

  11. Fulk F, Succop P, Hilbert TJ, Beidler C, Brown D, Reponen T, et al. Pathways of inhalation exposure to manganese in children living near a ferromanganese refinery: A structural equation modeling approach. Sci Total Environ. 2017;579:768-75. https://doi.org/10.1016/j.scitotenv.2016.11.030

  12. Rodrigues JLG, Bandeira MJ, Araújo CFS, dos Santos NR, Anjos ALS, Koin NL, et al. Manganese and lead levels in settled dust in elementary schools are correlated with biomarkers of exposure in school-aged children. Environ Pollut. 2018;236:1004-13. https://doi.org/10.1016/j. envpol.2017.10.132

  13. Ihl T, Bautista F, Cejudo Ruíz FR, Delgado M del C, Quintana Owen P, Aguilar D, et al. Concentration of toxic elements in topsoils of the metropolitan area of Mexico city: A spatial analysis using ordinary kriging and indicator kriging. Rev Int Contam Ambient. 2015;31(1):47-62 [cited April, 2019]. Available from: http://www.scielo.org.mx/scielo.php?script=sci_ abstract&pid=S0188-49992015000100004&lng=en&nrm=iso&tlng=en

  14. Kabata-Pendias A. Trace elements in soils and plants. 4th ed. New York: CRC Press, 2011 [cited April, 2019]. Available from: https://n9.cl/17j

  15. Declercq Y, Samson R, Castanheiro A, Spassov S, Tack FMG, Van De Vijver E, et al. Evaluating the potential of topsoil magnetic pollution mapping across different land use classes. Sci Total Environ. 2019;685:345-56. https://doi.org/10.1016/j.scitotenv.2019.05.379

  16. Delgado C, Bautista F, Gogichaishvili A, Cortés JL, Quintana P, Aguilar D, et al. Identificación de las zonas contaminadas con metales pesados en el polvo urbano de la Ciudad de México. Rev Int Contam Ambie. 2019;35(1):81-100 [cited April, 2019]. Available from: https://www.revistascca.unam.mx/rica/index.php/rica/article/view/ RICA.2019.35.01.06/46811

  17. Guvenç N, Alagha O, Tuncel G. Investigation of soil multi-element composition in Antalya, Turkey. Environ Int. 2003(5):631-40. https://doi. org/10.1016/S0160-4120(03)00046-1

  18. Aguilera A, Armendariz C, Quintana P, García-Oliva F, Bautista F. Influence of Land Use and Road Type on the Elemental Composition of Urban Dust in a Mexican Metropolitan Area. Polish J Environ Stud. 2019;28(3):1535-47. https://doi.org/10.15244/pjoes/90358

  19. Shi D, Lu X, Wang Q. Evaluating Health Hazards of Harmful Metals in Roadway Dust Particles Finer than 100 μm. Polish J Environ Stud. 2018;27(6):2729-37. https://doi.org/10.15244/pjoes/80820

  20. Safiur Rahman M, Khan MDH, Jolly YN, Kabir J, Akter S, Salam A. Assessing risk to human health for heavy metal contamination through street dust in the Southeast Asian Megacity: Dhaka, Bangladesh. Sci Total Environ. 2019;660:1610-22. https://doi.org/10.1016/j.scitotenv.2018.12.425




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

salud publica mex. 2020;62

ARTíCULOS SIMILARES

CARGANDO ...