2020, Número 1
<< Anterior Siguiente >>
Rev Educ Bioquimica 2020; 39 (1)
Topología Genómica, Transcripción y Replicación, tres procesos funcionalmente entrelazados
Jácome-López K, Furlan-Magaril M
Idioma: Español
Referencias bibliográficas: 59
Paginas: 14-25
Archivo PDF: 299.60 Kb.
RESUMEN
Con la finalidad de entender cómo se relaciona la topología del genoma con la transcripción,
en esta revisión analizaremos las evidencias que sugieren a la organización
tridimensional del genoma como regulador de la transcripción y datos que sugieren a la
transcripción como el proceso regulador de la organización del genoma. Por otro lado,
resulta interesante entender cómo la maquinaria de replicación del DNA se enfrenta a
esta organización tridimensional, por lo que abordaremos también evidencias recientes
de cómo la estructura tridimensional del genoma puede ser relevante durante el
proceso de replicación y las implicaciones de este proceso en la topología genómica.
REFERENCIAS (EN ESTE ARTÍCULO)
Cremer T, Cremer C. (2001) Chromosome Territories, Nuclear Architecture and Gene Regulation in Mammalian Cells. Nat Rev Genet 2:292-301.
Lieberman-aiden E, Berkum NL Van, Williams L, Imakaev M, Ragoczy T, Telling A, et al. (2009) Comprehensive Mapping of Long- Range Interactions Reveals Folding Principles of the Human Genome. Science 326:289-293.
Dixon JR, Gorkin DU, Ren B. (2016) Chromatin Domains: The Unit of Chromosome Organization. Mol Cell 62:668-680.
Bonev Boyan, Cavalli Giacomo (2016) Organization and function of the 3D genome. Nat Rev Genet 17:661-678.
Lupiáñez DG, Spielmann M, Mundlos S. (2016) Breaking TADs: How Alterations of Chromatin Domains Result in Disease. Trends Genet 32:225-237.
Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, et al. (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376-380.
Hong S, Kim D. (2017) Computational characterization of chromatin domain boundary-associated genomic elements. Nucleic Acids Res 45:10403-10414.
Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, et al. (2012) Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485:381-385.
Lupiáñez DG, Kraft K, Heinrich V, Krawitz P, Brancati F, Klopocki E, et al. (2015) Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161:1012-1025.
van Steensel B, Furlong EEM (2019) The role of transcription in shaping the spatial organization of the genome. Nat Rev Mol Cell Biol 20:327-337.
Rowley MJ, Nichols MH, Lyu X, Ando-Kuri M, Rivera ISM, Hermetz K, et al. (2017) Evolutionarily Conserved Principles Predict 3D Chromatin Organization. Mol Cell 67(5):837- 852.e7.
Crane E, Bian Q, Mccord RP, Lajoie BR, Wheeler BS, Ralston EJ, et al. (2015) Condensin-driven remodelling of X chromosome topology during dosage compensation. Nature 523(7559):240- 4.
Wang G, Becker C, Weigel D, Zaidem M, Wang C, Liu C. (2017) Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution. Genome Res. 26:1057-1068.
Liu C, Cheng Y-J, Wang J-W, Weigel D. (2017) Prominent topologically associated domains differentiate global chromatin packing in rice from Arabidopsis. Nat Plants 3:742-748.
Ong C, Corces VG. (2014) CTCF : an architectural protein bridging genome topology and function. Nat Publ Gr 15(4):234-46.
Merkenschlager M, Nora EP. (2016) CTCF and Cohesin in Genome Folding and Transcriptional Gene Regulation. Annu Rev Genomics Hum Genet 17(1):17-43.
Hansen AS, Pustova I, Cattoglio C, Tjian R, Darzacq X. (2017) CTCF and cohesin regulate chromatin loop stability with distinct dynamics. Elife 6:1-10.
Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, et al. (2013) Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153(2):307-19.
Kragesteen BK, Spielmann M, Paliou C, Heinrich V, Schöpflin R, Esposito A, et al. (2018) Dynamic 3D chromatin architecture contributes to enhancer specificity and limb morphogenesis. Nat Genet 50(10):1463-73.
Spielmann M, Brancati F, Krawitz PM, Robinson PN, Ibrahim DM, Franke M, et al. (2012) Homeotic arm-to-leg transformation associated with genomic rearrangements at the PITX1 locus. Am J Hum Genet 91(4):629- 35.
Flottmann R, Wagner J, Kobus K, Curry CJ, Savarirayan R, Nishimura G, et al. (2015) Microdeletions on 6p22.3 are associated with mesomelic dysplasia Savarirayan type. J Med Genet 52(7):476-83.
Franke M, Ibrahim DM, Andrey G, Schwarzer W, Heinrich V, Schöpflin R, et al. (2016) Formation of new chromatin domains determines pathogenicity of genomic duplications. Nature 538:265-269.
Despang A, Schöpflin R, Franke M, Ali S, Jerkovic I, Paliou C, et al. Functional dissection of the Sox9-Kcnj2 locus identifies nonessential and instructive roles of TAD rchitecture. (2019) Nat Genet 51(August):566562.
Flavahan WA, Drier Y, Liau BB, Gillespie SM, Venteicher AS, Stemmer-Rachamimov AO, et al. (2016) Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529:110-114.
Reddy J, Porteus MH, Fan ZPZP, Goldmann J, Weintraub AS, Lajoie BR, et al. (2016) Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science 351:1454-1458.
Symmons O, Pan L, Remeseiro S, Aktas T, Klein F, Huber W, et al. (2016) The Shh Topological Domain Facilitates the Action of Remote Enhancers by Reducing the Effects of Genomic Distances. Dev Cell 39:529-543.
Narendra V, Rocha PP, An D, Raviram R, Skok JA, Mazzoni EO, et al. (2015) CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation. Science 347:1017-1021.
Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny LA. (2016) Formation of Chromosomal Domains by Loop Extrusion. Cell Rep 15(9):2038-49.
Nakahashi H, Kwon K-RK, Resch W, Vian L, Dose M, Stavreva D, et al. (2013) A genomewide map of CTCF multivalency redefines the CTCF code. Cell Rep 3:1678-1689.
Nora EP, Goloborodko A, Valton AL, Gibcus J, Uebersohn A, Abdennur N, et al. (2017) Targeted degradation of CTCF decouples local insulation of chromosome domains from higher-order genomic compartmentalization. Cell 169:930-944.
Wutz G, Várnai C, Nagasaka K, Cisneros DA, Stocsits RR, Tang W, et al. (2017) Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO J. 36:3573- 3599.
Saldaña-Meyer R, Rodriguez-Hernaez J, Escobar T, Nishana M, Jácome-López K, Nora EP, et al. (2019) RNA Interactions Are Essential for CTCF-Mediated Genome Organization. Mol Cell 76:1-11.
Wendt KS, Yoshida K, Itoh T, Bando M, Koch B, Schirghuber E, et al. (2008) Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451:796-801.
Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, et al. (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:1665-1680.
Rao SSP, Huang SC, Glenn St Hilaire B, Engreitz JM, Perez EM, Kieffer-Kwon KR, et al. (2017) Cohesin Loss Eliminates All Loop Domains. Cell 171:305-320.
Schwarzer W, Abdennur N, Goloborodko A, Pekowska A, Fudenberg G, Loe-Mie Y, et al. (2017) Two independent modes of chromatin organization revealed by cohesin removal. Nature 551:51-56.
Rubin AJ, Barajas BC, Furlan-Magaril M, Lopez-Pajares V, Mumbach MR, Howard I, et al. (2017) Lineage-specific dynamic and pre-established enhancer-promoter contacts cooperate in terminal differentiation. Nat Genet 49(10):1522-8.
Le TBK, Imakaev M V., Mirny LA, Laub MT (2013) High-resolution mapping of the spatial organization of a bacterial chromosome. Science 342:731-734.
Le TB, Laub MT (2016) Transcription rate and transcript length drive formation of chromosomal interaction domain boundaries. EMBO J. 35:1582-1595.
Marbouty M, Le Gall A, Cattoni DI, Cournac A, Koh A, Fiche JB, et al. (2015) Condensin- and Replication-Mediated Bacterial Chromosome Folding and Origin Condensation Revealed by Hi-C and Super-resolution Imaging. Mol Cell 59:588-602.
Ulianov S, Razin S, Shevelyov Y. (2016) Active chromatin and transcription play a key role in chromosome partitioning into TADs. Genome Res 1:70-84.
Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, Hoichman M, et al. (2012) Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148:458-472.
Chathoth KT, Zabet NR. (2019) Chromatin architecture reorganisation during neuronal cell differentiation in Drosophila genome. Genome Res 29:613-625.
Arzate-Mejía RG, Cerecedo-Castillo AJ, Guerrero G, et al. (2019) In situ dissection of domain boundaries affect genome topology and gene transcription in Drosophila. bioRxiv September 19, 2019.
Li L, Lyu X, Hou C, Takenaka N, Nguyen HQ, Ong CT, et al. (2015) Widespread Rearrangement of 3D Chromatin Organization Underlies Polycomb-Mediated Stress-Induced Silencing. Mol Cell 58:216-231.
Rowley MJ, Lyu X, Rana V, Ando-Kuri M, Karns R, Bosco G, et al. (2019) Condensin II Counteracts Cohesin and RNA Polymerase II in the Establishment of 3D Chromatin Organization. Cell Rep 26:2890-2903.
Bonev B, Mendelson Cohen N, Szabo Q, Fritsch L, Papadopoulos GL, Lubling Y, et al. (2017) Multiscale 3D Genome Rewiring during Mouse Neural Development. Cell 171:557-572.
Barutcu AR, Maass PG, Lewandowski JP, Weiner CL, Rinn JL. (2018) A TAD boundary is preserved upon deletion of the CTCF-rich Firre locus. Nat Commun 9:1-11.
Carone BR, Hung JH, Hainer SJ, Chou M Te, Carone DM, Weng Z, et al. (2014) Highresolution mapping of chromatin packaging in mouse embryonic stem cells and sperm. Dev Cell 30:11-22.
Ke Y, Xu Y, Chen X, Feng S, Liu Z, Sun Y, et al. (2017) 3D Chromatin Structures of Mature Gametes and Structural Reprogramming during Mammalian Embryogenesis. Cell 170:367-381.
Battulin N, Fishman VS, Mazur AM, Pomaznoy M, Khabarova AA, Afonnikov DA, et al. (2015) Comparison of the three-dimensional organization of sperm and fibroblast genomes using the Hi-C approach. Genome Biol 16:77.
Jung YH, Sauria MEG, Lyu X, Cheema MS, Ausio J, Taylor J, et al. (2017) Chromatin States in Mouse Sperm Correlate with Embryonic and Adult Regulatory Landscapes. Cell Rep 18:1366-1382.
Du Z, Zheng H, Huang B, Ma R, Wu J, Zhang X, et al. (2017) Allelic reprogramming of 3D chromatin architecture during early mammalian development. Nature 547:232- 235.
Flyamer IM, Gassler J, Imakaev M, Ulyanov S V., Abdennur N, Razin S V., et al. (2017) Single-cell Hi-C reveals unique chromatin reorganization at oocyte-tozygote transition. Nat Publ Gr 544:1-17.
Hug CB, Grimaldi AG, Kruse K, Vaquerizas JM. (2017) Chromatin Architecture Emerges during Zygotic Genome Activation Independent of Transcription. Cell 169:216-228.
Kaaij LJT, van der Weide RH, Ketting RF, de Wit E. (2018) Systemic Loss and Gain of Chromatin Architecture throughout Zebrafish Development. Cell Rep. 24:1-10.
Pope BD, Ryba T, Dileep V, Yue F, Wu W, Denas O, et al. (2014) Topologically associating domains are stable units of replication-timing regulation. Nature 515:402-405.
Nagano T, Lubling Y, Várnai C, Dudley C, Leung W, Baran Y, et al. (2017) Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature 547:61-67.
Sima J, Chakraborty A, Dileep V, Fraser P, Ay F, Gilbert DM, et al. (2019) Identifying cis Elements for Spatiotemporal Control of Mammalian DNA Replication Article Identifying cis Elements for Spatiotemporal Control of Mammalian DNA Replication. Cell 176:816- 830.