medigraphic.com
ENGLISH

Salud Pública de México

Instituto Nacional de Salud Pública
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2020, Número 4

<< Anterior Siguiente >>

salud publica mex 2020; 62 (4)


Variación molecular de la dehidrofolato reductasa de Plasmodium vivax en México y Nicaragua contrasta con la que ocurre en Sudamérica

González-Cerón L, Rodríguez MH, Montoya A, Santillán-Valenzuela F, Corzo-Gómez JC
Texto completo Cómo citar este artículo Artículos similares

Idioma: Ingles.
Referencias bibliográficas: 59
Paginas: 364-371
Archivo PDF: 275.32 Kb.


PALABRAS CLAVE

Plasmodium vivax, pvdhfr, variación molecular, pirimetamina, México, Nicaragua.

RESUMEN

Objetivo. Determinar mutaciones en la dihydrofolato reductasa de P. vivax (Pvdhfr) en parásitos de México y Nicaragua, y comparar con lo reportado en América. Material y métodos. Del ADN de sangres infectadas con P. vivax de pacientes, el gen pvdhfr se amplifico y secuenció, y se contrastócon lo observado en América. Resultados. No se detectaron mutaciones asociadas con la resistencia debida a pirimetamina. Los parásitos de Nicaragua tuvieron una mutación sinónima y variación en la región repetida. Se reportaron frecuentes mutaciones asociadas con la resistencia a la pirimetamina en Sudamérica. Conclusiones. La ausencia de polimorfismos en Pvdhfr sugiere que no se han seleccionado ni introducido parásitos resistentes en la zona de estudio, lo que resulta muy útil para la vigilancia epidemiológica.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. World Health Organization. Malaria Report 2017. Geneva: WHO, 2017.

  2. Organización Panamericana de la Salud. Informe de la situación de Paludismo en las Américas, 2014. Washington DC: OPS, 2017.

  3. Pan American Health Organization. Epidemiological Update. Increase of malaria in the Americas, 2018. Washington DC: OPS, 2018.

  4. Secretaría de Salud. Boletín Epidemiológico Sistema Nacional de Vigilancia Epidemiológica Sistema Único de Información. Mexico City: Sinave, 2017.

  5. Gabaldon A, Berti AL. The first large area in the tropical zone to report malaria eradication: North-Central Venezuela. Am J Trop Med Hyg. 1954;3:793-807. https://doi.org/10.4269/ajtmh.1954.3.793

  6. Pinotti M. New method of malaria prevention: combination of an antimalarial drug with table salt used daily in food. Rev Bras Malariol Doencas Trop. 1954;6(1):5-12.

  7. Maberti S. The development of resistance to pyrimethamine. Presentation of 15 cases studied in Trujillo, Venezuela. Arch Venez Med Trop Parasitol Med. 1960;3:239-59.

  8. Moore DV, Lanier JE. Observations on two Plasmodium falciparum infections with an abnormal response to chloroquine. Am J Trop Med Hyg. 1961;10:5-9. https://doi.org/10.4269/ajtmh.1961.10.5

  9. Wernsdorfer WH, Kouznetsov RL. Drug-resistant malaria--occurrence, control, and surveillance. Bull World Health Organ. 1980;58(3):341-52.

  10. White NJ. Antimalarial drug resistance. J Clin Invest. 2004;113:1084-92. https://doi.org/10.1172/JCI200421682

  11. Contreras CE, Cortese JF, Caraballo A, Plowe CV. Genetics of drug-resistant Plasmodium falciparum malaria in the Venezuelan state of Bolivar. Am J Trop Med Hyg. 2002;67:400-5. https://doi.org/10.4269/ajtmh. 2002.67.400

  12. Godoy GA, Volcan GS, Guevara R, Medrano C, Castro J, Texeira A. Venezuelan strains of Plasmodium falciparum resistant to sulfa and pyrimethamine as demonstrated by in vitro test. Rev Latinoam Microbiol. 1977;19:229-31.

  13. Alecrim WD, Dourado H, Alecrim M das G, Passos LF, Wanssa E, Albuquerque B [In vivo resistance of Plasmodium falciparum to the combination of sulfadoxine and pyrimethamine, at RIII level, in Amazonas, Brazil]. Rev Inst Med Trop Sao Paulo. 1982;24(suppl 6):52-3.

  14. World Health Organization. Antimalarial durg combination therapy: report of a WHO technical consultation. Geneva: WHO/RBM, 2001.

  15. World Health Organization. Guidelines for the treatment of malaria 2015. 3rd ed. Geneva: WHO, 2015.

  16. Yuthavong Y, Kamchonwongpaisan S, Leartsakulpanich U, Chitnumsub P. Folate metabolism as a source of molecular targets for antimalarials. Future Microbiol. 2006;1:113-25. https://doi.org/10.2217/17460913.1.1.113

  17. Picot S, Olliaro P, de Monbrison F, Bienvenu AL, Price RN, Ringwald P. A systematic review and meta-analysis of evidence for correlation between molecular markers of parasite resistance and treatment outcome in falciparum malaria. Malar J. 2009;8:89. https://doi.org/10.1186/1475-2875-8-89

  18. Alam MT, Bora H, Bharti PK, Saifi MA, Das MK, Dev V, et al. Similar trends of pyrimethamine resistance-associated mutations in Plasmodium vivax and P. falciparum. Antimicrob Agents Chemother. 2007;51:857-63. https://doi.org/10.1128/AAC.01200-06

  19. Young MD, Burgess RW. Pyrimethamine resistance in Plasmodium vivax malaria. Bull World Health Organ. 1959;20(1):27-36.

  20. Imwong M, Pukrittakayamee S, Looareesuwan S, Pasvol G, Poirreiz J, White NJ, et al. Association of genetic mutations in Plasmodium vivax dhfr with resistance to sulfadoxine-pyrimethamine: geographical and clinical correlates. Antimicrob Agents Chemother. 2001;45:3122-7. https://doi. org/10.1128/AAC.45.11.3122-3127.2001

  21. World Health Organization. World Malaria Report 2015. Geneva: WHO, 2015.

  22. Haghdoost AA, Alexander N. Systematic review and meta-analysis of the interaction between Plasmodium falciparum and Plasmodium vivax in humans. J Vector Borne Dis. 2007;44(1):33-43.

  23. Stepniewska K, White NJ. Pharmacokinetic determinants of the window of selection for antimalarial drug resistance. Antimicrob Agents Chemother. 2008;52:1589-96. https://doi.org/10.1128/AAC.00903-07

  24. Hawkins VN, Joshi H, Rungsihirunrat K, Na-Bangchang K, Sibley CH. Antifolates can have a role in the treatment of Plasmodium vivax. Trends Parasitol. 2007;23:213-22. https://doi.org/10.1016/j.pt.2007.03.002

  25. de Pecoulas PE, Tahar R, Ouatas T, Mazabraud A, Basco LK. Sequence variations in the Plasmodium vivax dihydrofolate reductase-thymidylate synthase gene and their relationship with pyrimethamine resistance. Mol Biochem Parasitol. 1998;92:265-73. https://doi.org/10.1016/S0166- 6851(97)00247-8

  26. Hastings MD, Porter KM, Maguire JD, Susanti I, Kania W, Bangs MJ, et al. Dihydrofolate reductase mutations in Plasmodium vivax from Indonesia and therapeutic response to sulfadoxine plus pyrimethamine. J Infect Dis. 2004;189:744-50. https://doi.org/10.1086/381397

  27. Hastings MD, Maguire JD, Bangs MJ, Zimmerman PA, Reeder JC, Baird JK, et al. Novel Plasmodium vivax dhfr alleles from the Indonesian Archipelago and Papua New Guinea: association with pyrimethamine resistance determined by a Saccharomyces cerevisiae expression system. Antimicrob Agents Chemother. 2005;49:733-40. https://doi.org/10.1128/ AAC.49.2.733-740.2005

  28. Hupalo DN, Luo Z, Melnikov A, Sutton PL, Rogov P, Escalante A, et al. Population genomics studies identify signatures of global dispersal and drug resistance in Plasmodium vivax. Nat Genet. 2016;48:953-8. https://doi. org/10.1038/ng.3588

  29. Hawkins VN, Auliff A, Prajapati SK, Rungsihirunrat K, Hapuarachchi HC, Maestre A, et al. Multiple origins of resistance-conferring mutations in Plasmodium vivax dihydrofolate reductase. Malar J. 2008;7:72. https://doi. org/10.1186/1475-2875-7-72

  30. Saralamba N, Nakeesathit S, Mayxay M, Newton PN, Osorio L, Kim JR, et al. Geographic distribution of amino acid mutations in DHFR and DHPS in Plasmodium vivax isolates from Lao PDR, India and Colombia. Malar J. 2016;15:484. https://doi.org/10.1186/s12936-016-1543-8

  31. Winter DJ, Pacheco MA, Vallejo AF, Schwartz RS, Arevalo-Herrera M, Herrera S, et al. Whole genome sequencing of field isolates reveals extensive genetic diversity in Plasmodium vivax from Colombia. PLoS Negl Trop Dis. 2015;9:e0004252. https://doi.org/10.1371/journal.pntd.0004252

  32. Cubides JR, Camargo-Ayala PA, Nino CH, Garzon-Ospina D, Ortega- Ortegon A, Ospina-Cantillo E, et al. Simultaneous detection of Plasmodium vivax dhfr, dhps, mdr1 and crt-o resistance-associated mutations in the Colombian Amazonian region. Malar J. 2018;17:130. https://doi.org/0.1186/ s12936-018-2286-5

  33. Chehuan YF, Costa MR, Costa JS, Alecrim MG, Nogueira F, Silveira H, et al. In vitro chloroquine resistance for Plasmodium vivax isolates from the Western Brazilian Amazon. Malar J. 2013;12:226. https://doi. org/10.1186/1475-2875-12-226

  34. Marques MM, Costa MR, Santana Filho FS, Vieira JL, Nascimento MT, Brasil LW, et al. Plasmodium vivax Chloroquine resistance and anemia in the Western Brazilian Amazon. Antimicrob Agents Chemother. 2014;58:342-7. https://doi.org/10.1128/AAC.02279-12

  35. Barnadas C, Musset L, Legrand E, Tichit M, Briolant S, Fusai T, et al. High prevalence and fixation of Plasmodium vivax dhfr/dhps mutations related to sulfadoxine/pyrimethamine resistance in French Guiana. Am J Trop Med Hyg. 2009;81:19-22. https://doi.org/10.4269/ajtmh.2009.81.19

  36. Mace KE, Arguin PM, Tan KR. Malaria surveillance — United States, 2015. MMWR Surveill Summ. 2018;67(7):1-28. https://doi.org/10.15585/ mmwr.ss6707a1

  37. Rodrigues PT, Valdivia HO, de Oliveira TC, Alves JMP, Duarte A, Cerutti-Junior C, et al. Human migration and the spread of malaria parasites to the New World. Sci Rep. 2018;8:1993. https://doi.org/10.1038/ s41598-018-19554-0

  38. Secretaría de salud. Norma Oficial Mexicana NOM-032-SSA2-2014, para la vigilancia epidemiológica, prevención y control de las enfermedades transmitidas por vectores. Mexico City: Secretaría de Salud, 2014.

  39. Pan American Health Organization. Situación de la malaria en la región de las Américas, 2000-2016. Washington DC: PAHO, 2016.

  40. Gonzalez-Ceron L, Montoya A, Corzo-Gomez JC, Cerritos R, Santillan F, Sandoval MA. Genetic diversity and natural selection of Plasmodium vivax multi-drug resistant gene (pvmdr1) in Mesoamerica. Malar J. 2017;16:261. https://doi.org/10.1186/s12936-017-1905-x

  41. Gonzalez-Ceron L, Rodriguez MH, Sandoval MA, Santillan F, Galindo- Virgen S, Betanzos AF, et al. Effectiveness of combined chloroquine and primaquine treatment in 14 days versus intermittent single dose regimen, in an open, non-randomized, clinical trial, to eliminate Plasmodium vivax in southern Mexico. Malar J. 2015;14:426. https://doi.org/10.1186/s12936- 015-0938-2

  42. Gonzalez-Ceron L, Martinez-Barnetche J, Montero-Solis C, Santillan F, Soto AM, Rodriguez MH, et al. Molecular epidemiology of Plasmodium vivax in Latin America: polymorphism and evolutionary relationships of the circumsporozoite gene. Malar J. 2013;12:243. https://doi.org/10.1186/1475- 2875-12-243

  43. Carlton JM, Adams JH, Silva JC, Bidwell SL, Lorenzi H, Caler E, et al. Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature. 2008;455:757-63. https://doi.org/10.1038/nature07327

  44. Jovel IT, Mejia RE, Banegas E, Piedade R, Alger J, Fontecha G, et al. Drug resistance associated genetic polymorphisms in Plasmodium falciparum and Plasmodium vivax collected in Honduras, Central America. Malar J. 2011;10:376. https://doi.org/10.1186/1475-2875-10-376

  45. Sridaran S, Rodriguez B, Soto AM, Macedo De Oliveira A, Udhayakumar V. Molecular analysis of chloroquine and sulfadoxine-pyrimethamine resistance-associated alleles in Plasmodium falciparum isolates from Nicaragua. Am J Trop Med Hyg. 2014;90:840-5. https://doi.org/10.4269/ ajtmh.13-0214

  46. Lee WJ, Kim HH, Choi YK, Choi KM, Kim MA, Kim JY, et al. Analysis of the dihydrofolate reductase-thymidylate synthase gene sequences in Plasmodium vivax field isolates that failed chloroquine treatment. Malar J. 2010;9:331. https://doi.org/10.1186/1475-2875-9-331

  47. Imwong M, Pukrittayakamee S, Renia L, Letourneur F, Charlieu JP, Leartsakulpanich U, et al. Novel point mutations in the dihydrofolate reductase gene of Plasmodium vivax: evidence for sequential selection by drug pressure. Antimicrob Agents Chemother. 2003;47:1514-21. https:// doi.org/10.1128/AAC.47.5.1514-1521.2003

  48. Samudio F, Santamaria AM, Obaldia N 3rd, Pascale JM, Bayard V, Calzada JE. Prevalence of Plasmodium falciparum mutations associated with antimalarial drug resistance during an epidemic in Kuna Yala, Panama, Central America. Am J Trop Med Hyg. 2005;73:839-41. https://doi.org/10.4269/ ajtmh.2005.73.839

  49. Lu F, Lim CS, Nam DH, Kim K, Lin K, Kim TS, et al. Mutations in the antifolate-resistance-associated genes dihydrofolate reductase and dihydropteroate synthase in Plasmodium vivax isolates from malaria-endemic countries. Am J Trop Med Hyg. 2010;83:474-9. https://doi.org/10.4269/ ajtmh.2010.10-0004

  50. Sharifi-Sarasiabi K, Haghighi A, Kazemi B, Taghipour N, Mojarad EN, Gachkar L. Molecular surveillance of Plasmodium vivax and Plasmodium falciparum dhfr mutations in isolates form southern Iran. Rev Inst Med Trop Sao Paulo. 2016;58:16. https://doi.org/10.1590/S1678-9946201658016

  51. Das S, Banik A, Hati AK, Roy S. Low prevalence of dihydro folate reductase (dhfr) and dihydropteroate synthase (dhps) quadruple and quintuple mutant alleles associated with SP resistance in Plasmodium vivax isolates of West Bengal, India. Malar J. 2016;15:395. https://doi.org/10.1186/ s12936-016-1445-9

  52. Bareng AP, Espino FE, Chaijaroenkul W, Na-Bangchang K. Molecular monitoring of dihydrofolatereductase (dhfr) and dihydropteroatesynthe tase (dhps) associated with sulfadoxine-pyrimethamine resistance in Plasmodium vivax isolates of Palawan, Philippines. Acta Trop. 2018;180:81-7. https://doi.org/10.1016/j.actatropica.2018.01.006

  53. Asih PB, Marantina SS, Nababan R, Lobo NF, Rozi IE, Sumarto W, et al. Distribution of Plasmodium vivax pvdhfr and pvdhps alleles and their association with sulfadoxine-pyrimethamine treatment outcomes in Indonesia. Malar J. 2015;14:365. https://doi.org/10.1186/s12936-015-0903-0

  54. Huang B, Huang S, Su XZ, Tong X, Yan J, Li H, et al. Molecular surveillance of pvdhfr, pvdhps, and pvmdr-1 mutations in Plasmodium vivax isolates from Yunnan and Anhui provinces of China. Malar J. 2014;13:346. https:// doi.org/10.1186/1475-2875-13-346

  55. Auliff A, Wilson DW, Russell B, Gao Q, Chen N, Anh le N, et al. Amino acid mutations in Plasmodium vivax DHFR and DHPS from several geographical regions and susceptibility to antifolate drugs. Am J Trop Med Hyg. 2006;75:617-21. https://doi.org/10.4269/ajtmh.2006.75.617

  56. Urdaneta L, Plowe C, Goldman I, Lal AA. Point mutations in dihydrofolate reductase and dihydropteroate synthase genes of Plasmodium falciparum isolates from Venezuela. Am J Trop Med Hyg. 1999;61:457-62. https://doi.org/10.4269/ajtmh.1999.61.457

  57. Peterson DS, Di Santi SM, Povoa M, Calvosa VS, Do Rosario VE, Wellems TE. Prevalence of the dihydrofolate reductase Asn-108 mutation as the basis for pyrimethamine-resistant falciparum malaria in the Brazilian Amazon. Am J Trop Med Hyg. 1991;45:492-7. https://doi.org/10.4269/ ajtmh.1991.45.492

  58. Plowe CV, Cortese JF, Djimde A, Nwanyanwu OC, Watkins WM, Winstanley PA, et al. Mutations in Plasmodium falciparum dihydrofolate reductase and dihydropteroate synthase and epidemiologic patterns of pyrimethamine-sulfadoxine use and resistance. J Infect Dis. 1997;176:1590- 6. https://doi.org/10.1086/514159

  59. Cortese JF, Caraballo A, Contreras CE, Plowe CV. Origin and dissemination of Plasmodium falciparum drug-resistance mutations in South America. J Infect Dis. 2002;186:999-1006. https://doi.org/10.1086/342946




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

salud publica mex. 2020;62

ARTíCULOS SIMILARES

CARGANDO ...