medigraphic.com
ENGLISH

Salud Pública de México

Instituto Nacional de Salud Pública
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2020, Número 4

<< Anterior Siguiente >>

salud publica mex 2020; 62 (4)


Determinación de concentraciones letales y niveles de enzimas metabólicas de insecticidas en Triatoma dimidiata

Acero-Sandoval A, Penilla-Navarro RP, López-Ordóñez T, Rodríguez MH, Ordóñez-González JG, Solís-Santoyo F, Rodríguez AD
Texto completo Cómo citar este artículo Artículos similares

Idioma: Ingles.
Referencias bibliográficas: 37
Paginas: 402-409
Archivo PDF: 519.90 Kb.


PALABRAS CLAVE

Triatoma dimidiata, concentraciones letales, acetilcolinesterasa, citocromos P450, esterasas, glutatión Stransferasa.

RESUMEN

Objetivo. La factibilidad de usar los papeles impregnados y ensayos bioquímicos según la OMS para determinar concentraciones letales (CL50 y CL99) y niveles enzimáticos en la resistencia a insecticidas en Triatoma dimidiata. Material y métodos. Se calcularon la CL50 y CL99 con papeles impregnados según la OMS a diferentes concentraciones de malatión, propoxur y deltametrina; el porcentaje de acetilcolinesterasa insensible (iAChE); y los niveles de esterasas, glutatión S-transferasas, y monooxigenasas en ninfas de laboratorio del estadio I (5-7 días) se determinaron usando los ensayos bioquímicos según la OMS. Resultados. Se obtuvieron las CL50 y CL99 µg / cm2 respectivamente para malatión 43.83 y 114.38, propoxur 4.71 y 19.29, y deltametrina 5.80 y 40.46. Un 30% de las chinches tuvo iAChE, y sólo pocos individuos tuvieron niveles superiores de P450 y β-eterasas. Conclusión. Los papeles impregnados y ensayos bioquímicos que describe la OMS para otros insectos demostraron ser métodos factibles para monitorear la resistencia a insecticidas y las enzimas metabólicas involucradas en T. dimidiata.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Cruz-Reyes A, Pickering-Lopez JM. Chagas disease in Mexico: an analysis of geographical distribution during the past 76 years. Mem Inst Oswaldo Cruz. 2006;101(4):345-54. https://doi.org/10.1590/S0074- 02762006000400001

  2. Dumonteil E, Ruiz-Piña H, Rodriguez-Félix E, Barrera-Pérez M, Ramírez- Sierra MJ, Rabinovich JE, et al. Re-infestation of houses by Triatoma dimidiata after intra-domicile insecticide application in the Yucatán Peninsula. Mem Inst Oswaldo Cruz. 2004;99(3):253-6. https://doi.org/10.1590/S0074- 02762004000300002

  3. Secretaría de Salud. NOM-032-SSA2-2014. Norma Oficial Mexicana para la vigilancia epidemiológica, promoción, prevención y control de las enfermedades transmitidas por vectores. DOF, April 16, 2015 [cited 22 March 2019]. Available from: http://www.cenaprece.salud.gob.mx/programas/ interior/vectores/descargas/pdf/NOM_032_SSA2_2014.pdf

  4. Rivero A, Vézilier AJ, Weill M, Read AF, Gandon S. Insecticide control of vector-borne diseases: When is insecticide resistance a problem? PLOS Pathog. 2010;6(8):e1001000. https://doi.org/10.1371/journal.ppat.1001000

  5. Pessoa GCD, Viñas PA, Rosa ACL, Diotaiuti L. History of insecticide resistance of Triatominae vectors. Rev Soc Bras Med Trop. 2015;48(4):380- 9. https://doi.org/10.1590/0037-8682-0081-2015

  6. World Health Organization. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Global Malaria Programme. 2nd Ed. Geneva: WHO, 2013 [cited 22 March 2019]. Available from: http://apps. who.int/iris/bitstream/handle/10665/250677/9789241511575-eng.pdf;jsessi onid=BF31B2436F3030E1B8C1767718183BF1?sequence=1

  7. Picollo MI, Fontan A, Wood E, Zerba E. The biochemical basis of tolerance to Malathion in Rhodnius prolixus. Comp Biochem Physiol C. 1990;96(2):361-5. https://doi.org/10.1016/0742-8413(90)90022-2

  8. Sívori JL, Casabé N, Zerba EN, Wood EJ. Induction of glutathione S-transferase activity in Triatoma infestans. Mem Inst Oswaldo Cruz. 1997;92(6):797-802. https://doi.org/10.1590/S0074-02761997000600013

  9. González-Audino P, Vassena C, Barrios S, Zerba E. Role of enhanced detoxication in a deltamethrin-resistant population of Triatoma infestans (Hemiptera, Reduviidae) from Argentina. Mem Inst Oswaldo Cruz. 2004;99(3):335-9. https://doi.org/10.1590/S0074-02762004000300018

  10. Picollo MI, Vassena C, Orihuela PS, Barrios S, Zaidemberg M, Zerba E. High resistence to pyrethroid insecticides associated with ineffective field treatments in Triatoma infestans (Hemipetra: Reduviidade) from Northern Argentina. J Med Entomol. 2005;42(4):637-42. https://doi.org/10.1093/ jmedent/42.4.637

  11. Santo-Orihuela PL, Vassena CV, Zerba EN, Picollo MI. Relative contribution of monooxygenase and esterase to pyrethroid resistance in Triatoma infestans (Hemiptera: Reduviidae) from Argentina and Bolivia. J Med Entomol. 2008;45(2):298-306. https://doi.org/10.1093/jmedent/45.2.298

  12. Santo-Orihuela PL, Carvajal G, Picollo MI, Vassena CV. Toxicological and biochemical analysis of the susceptibility of sylvatic Triatoma infestans from the Andean Valley of Bolivia to organophosphate insecticide. Mem Inst Oswaldo Cruz. 2013;108(6):790-5. https://doi.org/10.1590/0074- 0276108062013017

  13. Santo-Orihuela PL, Carvajal G, Picollo MI, Vassena CV. Analysing deltamethrin susceptibility and pyrethroid esterase activity variations in sylvatic and domestic Triatoma infestans at the embryonic stage. Mem Inst Oswaldo Cruz. 2013;108(8):1031-6. https://doi.org/10.1590/0074-0276130184

  14. World Health Organization. Protocolo de evaluación de efecto insecticida sobre Triatominos. Acta Toxicol Argent. 1994;2:29-32.

  15. Eichler S, Schaub GA. Development of symbionts in triatomine bugs and the effects of infections with trypanosomatids. Exp Parasitol. 2002;100(1):17-27. https://doi.org/10.1006/expr.2001.4653

  16. World Health Organization. Techniques to detect insecticide resistance mechanisms. Field and laboratory manual. Geneva: WHO, 1998 [cited 22 March 2019]. Available from: http://www.who.int/whopes/resources/ who_cds_cpc_mal_98.6/en/

  17. Penilla RP, Rodriguez AD, Hemingway J, Torres JL, Arredondo-Jimenez JI, Rodriguez MH. Resistance management strategies in malaria vector mosquito control. Baseline data for a large-scale field trial against Anopheles albimanus in Mexico. Med Vet Entomol. 1998;12(3):217-33. https://doi. org/10.1046/j.1365-2915.1998.00123.x

  18. Fournier D. Mutations of acetylcholinesterase which confer insecticide resistance in insect populations. Chem Biol Interact. 2005;157-158:257-61. https://doi.org/10.1016/j.cbi.2005.10.040

  19. Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249(22):7130-9 [cited 22 march 2019]. Available from: http://www. jbc.org/content/249/22/7130.long

  20. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1-2):248-54. https://doi.org/10.1016/0003- 2697(76)90527-3

  21. Vassena CV, Picollo MI, Zerba EN. Insecticide resistance in Brazilian Triatoma infestans and Venezuelan Rhodnius prolixus. Med Vet Entomol. 2000;14(1):51-5. https://doi.org/10.1046/j.1365-2915.2000.00203.x

  22. Vassena CV, PicolIo MI. Monitoreo de resistencia a insecticidas en poblaciones de campo de Triatoma infestans y Rhodnius prolixus, insectos vectores de la enfermedad de Chagas. Revista de Toxicología en Línea. 2003;3:21 [cited 10 March 2019]. Available from: https://www.sertox.com. ar/modules.php?name=Content&pa=showpage&pid=104

  23. Reyes M, Angulo VM, Sandoval CM. Efecto tóxico de β-cipermetrina, deltametrina y fenitotrión en cepas de Triatoma dimidiata (Latreille, 1811) y Triatoma maculata (Erichson, 1848) (Hemiptera, Reduviidae). Biomédica. 2007;27(1 esp):75-82. https://doi.org/10.7705/biomedica.v27i1.250

  24. Lardeux F, Depickére S, Duchon S, Chavez T. Insecticide resistance of Triatoma infestans (Hemiptera, Reduviidae) vector of Chagas disease in Bolivia. Trop Med Int Health. 2010;15(9):1037-48. https://doi.org/10.1111/ j.1365-3156.2010.02573.x

  25. World Health Organization Pesticides Evaluation Scheme, Division of Control on Tropical Diseases. Report of the WHO informal consultation on the evaluation and testing of insecticides. Geneva: WHO, 1996 [cited 22 March 2019]. Available from: http://apps.who.int/iris/bitstream/ handle/10665/65962/CTD_WHOPES_IC_96.1.pdf?sequence=1

  26. Sfara V, Zerba E, Alzogaray RA. Toxicity of pyrethroids and repellency of diathyltoluamide in two deltamethrin-resistant colonies of Triatoma infestans Klug, 1834 (Hemiptera: Reduviidae). Mem Inst Oswaldo Cruz. 2006;101(1):89-94. https://doi.org/10.1590/S0074-02762006000100017

  27. Weill M, Malcolm C, Chandre F, Mogensen K, Berthomieu A, Marquine M, et al. The unique mutation in ace-1 giving high insecticide resistance is easily detectable in mosquito vectors. Insect Mol Biol. 2004;13(1):1-7. https://doi.org/10.1111/j.1365-2583.2004.00452.x

  28. Aponte HA, Penilla RP, Dzul-Manzanilla F, Che-Mendoza A, López AD, Solis F, et al. The pyrethroid resistance status and mechanisms in Aedes aegypti from the Guerrero state, Mexico. Pestic Biochem Physiol. 2013;107(2):226-34. https://doi.org/10.1016/j.pestbp.2013.07.005

  29. Clark AG, Shamaan NA, Sinclair MD, Dauterman WC. Insecticide metabolism by multiple glutathione S-transferases in two strains of the house fly, Musca domestica (L). Pestic Biochem Physiol. 1986;25(2):169-75. https://doi.org/10.1016/0048-3575(86)90044-1

  30. Vontas JG, Small GJ, Hemingway J. Glutathione S-transferases as antioxidant defense agents confer pyrethroid resistance in Nilaparvata lugens. Biochem J. 2001;357(1):65-72. https://doi.org/10.1042/bj3570065

  31. Penilla RP, Rodriguez AD, Hemingway J, Torres JL, Solis F, Rodriguez MH. Changes in glutathione S-transferase activity in DDT resistant natural Mexican populations of Anopheles albimanus under different insecticide resistance management strategies. Pestic Biochem Physiol. 2006;86(2):63- 71. https://doi.org/10.1016/j.pestbp.2006.01.006

  32. Karunaratne SH. Insecticide cross-resistance spectra and underlying resistance mechanisms of Sri Lankan anopheline vectors of malaria. Southeast Asian J Trop Med Public Health. 1999;30(3):460-9 [cited 22 March 2019]. Available from: https://www.researchgate.net/publication/ 12541389_Insecticide_cross-resistance_spectra_and_underlying_resistance_ mechanism_of_Sri_Lankan_Anopheline_vectors_of_malaria

  33. Bouvier JC, Boivin T, Beslay D, Sauphanor B. Age-dependent response to insecticides and enzymatic variation in susceptible and resistant codling moth larvae. Arch Insect Biochem Physiol. 2002;51(2):55-66. https://doi. org/10.1002/arch.10052

  34. Chouaibou MS, Chabi J, Bingham GV, Knox TB, N´Dri L, Kesse NB, et al. Increase in susceptibility to insecticides with aging of wild Anopheles gambiae mosquitoes from Côte d’Ivoire. BMC Infect Dis. 2012;12:214. https://doi.org/10.1186/1471-2334-12-214

  35. Hooven LA, Sherman KA, Butcher S, Giebultowicz JM. Does the clock make the poison? Circadian variation in response to pesticides. Plos One. 2009;4(7):e6469. https://doi.org/10.1371/journal.pone.0006469

  36. Balmert NJ, Rund SSC, Ghazi JP, Zhou P, Duffield GE. Time-of-day specific changes in metabolic detoxification and insecticide resistance in the malaria mosquito Anopheles gambiae. J Insect Physiol. 2014;64:30-9. https:// doi.org/10.1016/j.jinsphys.2014.02.013

  37. Panamerican Health Organization. II Reunión técnica latinoamericana de monitoreo de resistencia a insecticidas en triatominos vectores de Chagas. Panamá: PAHO; 11 al 13 de abril de 2005; 20 p.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

salud publica mex. 2020;62

ARTíCULOS SIMILARES

CARGANDO ...