medigraphic.com
ENGLISH

Salud Pública de México

Instituto Nacional de Salud Pública
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2020, Número 4

<< Anterior Siguiente >>

salud publica mex 2020; 62 (4)


Comparación de novaluron, piriproxifeno, spinosad y temefos como larvicidas contra Aedes aegypti en Chiapas, México

Marina CF, Bond JG, Muñoz J, Valle J, Quiroz-Martínez H, Torres-Monzón JA, Williams T
Texto completo Cómo citar este artículo Artículos similares

Idioma: Ingles.
Referencias bibliográficas: 35
Paginas: 424-431
Archivo PDF: 380.60 Kb.


PALABRAS CLAVE

larvicidas, spinosad, reguladores del crecimiento de insectos, oviposición.

RESUMEN

Objetivo. Comparar la eficacia de tres larvicidas modernos para el control de Aedes aegypti en tanques de agua doméstica en Chiapas. Material y métodos. Se comparó la eficacia de piriproxifeno, novalurón, dos formulaciones de spinosad (gránulos y tabletas) y temefos en ovitrampas y tanques domésticos de agua. Resultados. El piriproxifeno y el temefos proporcionaron de 2 a 3 semanas de control de larvas en ovitrampas, mientras que los gránulos de spinosad y novaluron proporcionaron de 7 a12 semanas. Los tanques de agua tratados produjeron una reducción significativa en la oviposición por Ae. aegypti en las casas (p‹0.001). Se encontró gran cantidad de larvas en los tanques tratados con temefos y piriproxifeno en comparación con los tratados con novaluron y tabletas de spinosad durante la mayor parte del estudio. Conclusión. Las formulaciones de spinosad en tabletas y novaluron fueron larvicidas efectivos en esta región. El bajo desempeño de temefos puede indicar una susceptibilidad reducida en poblaciones de Ae. aegypti en Chiapas.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Kraemer MU, Sinka ME, Duda KA, Mylne AQN, Shearer FM, Barker CM, et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife. 2015;4:e08347. https://doi.org/10.7554/eLife.08347.012

  2. Pilger D, Lenhart A, Manrique-Saide P, Siqueira JB, da Rocha WT, Kroeger A. Is routine dengue vector surveillance in central Brazil able to accurately monitor the Aedes aegypti population? Results from a pupal productivity survey. Trop Med Internat Health. 2011;16(9):1143-50. https://doi. org/10.1111/j.1365-3156.2011.02818.x

  3. Rodríguez MM, Bisset JA, Fernández D. Levels of insecticide resistance and resistance mechanisms in Aedes aegypti from some Latin American countries. J Am Mosq Contr Assoc. 2007;23(4):420-9. https://doi. org/10.2987/5588.1

  4. Grisales N, Poupardin R, Gomez S, Fonseca-Gonzalez I, Rason H, Lenhart A. Temephos resistance in Aedes aegypti in Colombia compromises dengue vector control. PLoS Negl Trop Dis. 2013;7(9):e2438. https://doi. org/10.1371/journal.pntd.0002438

  5. Flores AE, Salomon-Grajales J, Fernández-Salas I, Ponce-Garcia G, Loaiza-Becerra MH, Lozano S, et al. Mechanisms of insecticide resistance in field populations of Aedes aegypti (L.) from Quintana Roo, Southern Mexico. J Am Mosq Contr Assoc. 2006;22(4):672-7. https://doi. org/10.2987/8756-971X(2006)22[672:MOIRIF]2.0.CO;2

  6. Reyes-Solis GC, Saavedra-Rodriguez K, Flores-Suarez A, Black WC 4th. QTL mapping of genome regions controlling temephos resistance in larvae of the mosquito Aedes aegypti. PLoS Negl Trop Dis 2014;8(10):e3177. https://doi.org/10.1371/journal.pntd.0003177

  7. Secretaría de Salud. Lista actualizada de productos recomendados por el Cenaprece para el combate de insectos vectores de enfermedades a partir de 2015. Mexico: SS, 2015 [cited 2018 Oct 30]. Available from: https://www.gob.mx/cms/uploads/attachment/file/17698/ListaActualizada- InsumosRecomendadosCENAPRECE2015.pdf

  8. Secretaría de Salud. Productos recomendados por el Cenaprece para el combate de insectos vectores de enfermedades a partir de 2018. Mexico: SS, 2018 [cited 2018 Oct 30]. Available from: www.gob.mx/cms/uploads/ attachment/file/313976/ListaActualizadaAbril2018.pdf

  9. Bond JG, Marina CF, Williams T. The naturally derived insecticide spinosad is highly toxic to Aedes and Anopheles mosquito larvae. Med Vet Entomol. 2004;18(1):50-6. https://doi.org/10.1111/j.0269-283X.2004.0480.x

  10. Hertlein MB, Mavrotas C, Jousseaume C, Lysandrou M, Thompson GD, Jany W, Ritchie SA. A review of spinosad as a natural product for larval mosquito control. J Am Mosq Contr Assoc. 2010;26(1):67-87. https://doi. org/10.2987/09-5936.1

  11. Farnesi LC, Brito JM, Linss JG, Pelajo-Machado M, Valle D, Rezende GL. Physiological and morphological aspects of Aedes aegypti developing larvae: effects of the chitin synthesis inhibitor novaluron. PLoS One. 2012;7(1):e30363. https://doi.org/10.1371/journal.pone.0030363

  12. Darriet F, Marcombe S, Etienne M, Yébakima A, Agnew P, Yp-Tcha MM, Corbel V. Field evaluation of pyriproxyfen and spinosad mixture for the control of insecticide resistant Aedes aegypti in Martinique (French West Indies). Parasit Vectors. 2010;3:88. https://doi.org/10.1186/1756-3305-3-88

  13. Ortega-Morales AI, Moreno-García M, González-Acosta C, Correa- Morales F. Mosquito surveillance in Mexico: the use of ovitraps for Aedes aegypti, Ae. albopictus, and non-target species. Florida Entomol. 2018;101(4):623-7. https://doi.org/10.1653/024.101.0425

  14. Bond JG, Ramírez-Osorio A, Marina CF, Fernandez-Salas I, Liedo P, Dor A, Williams T. Efficiency of two larval diets for mass-rearing of the mosquito Aedes aegypti. PLoS One. 2017;12(11):e0187420. https://doi. org/10.1371/journal.pone.0187420

  15. World Health Organization. Guidelines for laboratory and field testing of mosquito larvicides. WHO, 2015 [cited 2018 Oct 30]. Available from: https://apps.who.int/iris/handle/10665/69101

  16. Nazni WA, Lee HL, Wan-Rozita WM, Lian AC, Chen CD, Azahari AH, et al. Oviposition behaviour of Aedes albopictus in temephos and Bacillus thuringiensis israelensis-treated ovitraps. Dengue Bull. 2009;33:209-17 [cited 2018 Oct 30]. Available from: http://www.who.int/iris/handle/ 10665/170958

  17. Argueta AL, Valle J, Marina CF. Efectos ovicida y larvicida del spinosad en Aedes aegypti (Diptera: Culicidae). Rev Colomb Entomol. 2011;37(2):269-72 [cited 2018 Oct 30]. Available from: http://ref.scielo. org/8n39x3

  18. Suman DS, Wang Y, Anwar L, Gaugler R. Ovicidal activity of three insect growth regulators against Aedes and Culex mosquitoes. Acta Trop. 2013;128(1):103-9. https://doi.org/10.1016/j.actatropica.2013.06.025

  19. Kim SHS, Wise JC, Gökçe A, Whalon ME. Novaluron causes reduced egg hatch after treating adult codling moths, Cydia pomenella: support for transovarial transfer. J Ins Sci. 2011;11(1):126. https://doi. org/10.1673/031.011.12601

  20. Marina CF, Bond JG, Muñoz J, Valle J, Quiroz-Martínez H, Torres- Monzón JA, et al. Efficacy of larvicides for control of dengue, Zika and chikungunya vectors in an urban cemetery in southern Mexico. Parasitol Res. 2018;117(6):1941-52. https://doi.org/10.1007/s00436-018-5891-x

  21. Che-Mendoza A, Guillermo-May G, Herrera-Bojórquez J, Barrera-Pérez M, Dzul-Manzanilla F, Gutierrez-Castro C, et al. Long-lasting insecticidetreated house screens and targeted treatment of productive breeding-sites for dengue vector control in Acapulco, Mexico. Trans R Soc Trop Med Hyg. 2015;109(2):106-15. https://doi.org/10.1093/trstmh/tru189

  22. Alsobhi AS, Al-Ghamdi K, Mahyoub JA, Mahyoub JA, Khatter NA, Saggu S, et al. Slow release formulations of Bacillus thuringiensis israelensis (AM 65-52) and spinosyns: effectiveness against the West Nile vector Culex pipiens in Saudi Arabia. Asian Pac J Trop Dis. 2016;6(7):533-8. https://doi. org/10.1016/S2222-1808(16)61083-6

  23. Nasci RS, Runde AB, Henry M, Harbison JE. Effectiveness of five products to control Culex pipiens larvae in urban stormwater catch basins. J Am Mosq Contr Assoc. 2017;33(4):309-17. https://doi.org/10.2987/17- 6686.1

  24. Pérez CM, Marina CF, Bond JG, Rojas JC, Valle J, Williams T. Spinosad, a naturally-derived insecticide, for control of Aedes aegypti: efficacy, persistence and oviposition response. J Med Entomol. 2007;44(4):631-8. https:// doi.org/10.1093/jmedent/44.4.631

  25. Marina CF, Bond JG, Casas M, Muñoz J, Orozco A, Valle J, et al. Spinosad as an effective larvicide for control of Aedes albopictus and Aedes aegypti, vectors of dengue in southern Mexico. Pest Manag Sci. 2011;67(1):114-21. https://doi.org/10.1002/ps.2043

  26. Marina CF, Bond JG, Muñoz J, Valle J, Chirino N, Williams T. Spinosad: a biorational mosquito larvicide for use in car tires in southern Mexico. Parasit Vectors. 2012;5:95. https://doi.org/10.1186/1756-3305-5-95

  27. Arredondo-Jiménez J, Valdez-Delgado KM. Effect of novaluron (Rimon® 10EC) on the mosquitoes Anopheles albimanus, Anopheles pseudopunctipennis, Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Chiapas, Mexico. Med Vet Entomol. 2006;20(4):377-87. https://doi. org/10.1111/j.1365-2915.2006.00656.x

  28. Mulla MS, Thavara U, Tawatsin A, Chompoosri J, Zaim M, Su T. Laboratory and field evaluation of novaluron, a new acylurea insect growth regulator against Aedes aegypti (Diptera: Culicidae). J Vector Ecol. 2003;28(2):241-54 [cited 2018 Oct 30]. Available from: https://pdfs.semanticscholar. org/e7db/3587e619991f64d9a191531f9ddd81e9e77d.pdf

  29. Fontoura NG, Bellinato DF, Valle D, Lima JBP. The efficacy of a chitin synthesis inhibitor against field populations of organophosphate-resistant Aedes aegypti in Brazil. Mem Inst Oswaldo Cruz. 2012;107(3):387-95. https://doi.org/10.1590/S0074-02762012000300014

  30. Seng CM, Setha T, Chanta N, Socheat D, Guillet P, Nathan MB. Inhibition of adult emergence of Aedes aegypti in simulated domestic water-storage containers by using a controlled-release formulation of pyriproxyfen. J Am Mosq Contr Assoc. 2006;22(1):152-4. https://doi. org/10.2987/8756-971X(2006)22[152:IOAEOA]2.0.CO;2

  31. Seccacini E, Lucia A, Harburguer L, Zerba E, Licastro S, Masuh H. Effectiveness of pyriproxyfen and diflubenzuron formulations as larvicides against Aedes aegypti. J Am Mosq Contr Assoc. 2008;24(3):398-403. https:// doi.org/10.2987/5697.1

  32. Sihuincha M, Zamora-Perea E, Orellana-Rios W, Stancil J, Lopez-Sifuentes V, Vidal-Oré C, Devine GJ. Potential use of pyriproxyfen for control of Aedes aegypti (Diptera: Culicidae) in Iquitos, Peru. J Med Entomol. 2005;42(4):620-30. https://doi.org/10.1093/jmedent/42.4.620

  33. Darriet F, Corbel V. Laboratory evaluation of pyriproxyfen and spinosad, alone and in combination, against Aedes aegypti larvae. J Med Entomol. 2006;43(6):1190-4. https://doi.org/10.1093/jmedent/43.6.1190

  34. Marcombe S, Darriet F, Agnew P, Etienne M, Yp-Tcha MM, Yébakima A, Corbel V. Field efficacy of new larvicide products for control of multi-resistant Aedes aegypti populations in Martinique (French West Indies). Am J Trop Med Hyg. 2011;84(1):118-26. https://doi.org/10.4269/ ajtmh.2011.10-0335

  35. Antonio-Arreola G, Sánchez D. Efectividad residual de temefos en una ciudad del sureste mexicano prevalente al dengue. Rev Cubana Med Trop. 2012;64(2):415-15 [cited 2018 Oct 30]. Available from: http://ref.scielo. org/728g73




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

salud publica mex. 2020;62

ARTíCULOS SIMILARES

CARGANDO ...