medigraphic.com
ENGLISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Digital)
ISSN 1405-888X (Impreso)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2020, Número 1

Siguiente >>

TIP Rev Esp Cienc Quim Biol 2020; 23 (1)


Bioaccesibilidad y cinética de liberación in vitro de compuestos fenólicos en algunas salsas de la cocina mexicana

Perales-Vázquez GC, Mercado-Mercado G, de la Rosa LA, Sáyago-Ayerdi SG
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 39
Paginas: 1-9
Archivo PDF: 469.04 Kb.


PALABRAS CLAVE

salsas mexicanas, bioaccesibilidad, cinética de liberación, compuestos fenólicos, modelo de digestión in vitro.

RESUMEN

Las salsas en la cocina mexicana son consideradas un complemento fundamental de todos los platillos. En este trabajo se prepararon cuatro tipos de salsas mexicanas (SM): salsa roja cruda (SRCr), salsa roja cocinada (SRC), salsa verde cruda (SVCr) y salsa verde cocinada (SVC), se evaluó el porcentaje de bioaccesibilidad (%BA) y la velocidad de liberación de los compuestos fenólicos (CF) presentes en las SM. Se identificaron y cuantificaron por HPLC-MS los CF liberados de las SM en las diferentes etapas de un modelo de digestión in vitro. El %BA fue del 50% para la SRCr y hasta 62% para la SRC, valores semejantes presentaron la SVC y la SVCr. En la fracción intestinal se identificaron compuestos como catequina y galocatequín galato en los cuatro tipos de SM. La velocidad de liberación de los CF más alta fue de 3.70 mg EAG/min en la SRC y 2.16 mg EAG/min en la SVC. Los resultados sugieren una rápida liberación de los CF en ambas salsas rojas, sin embargo, esto no afecta la liberación final de los CF. Evaluar la BA de los CF de diferentes alimentos permite conocer cuántos y cuáles son los CF que potencialmente pueden estar biodisponibles en el organismo.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Álvarez-Parrilla, E., de la Rosa, L. A., Amarowicz, R. & Shahidi, F. (2010). Antioxidant activity of fresh and processed Jalapeno and Serrano peppers. Journal of Agricultural and Food Chemistry, 59(1), 163-173. https:// doi.org/ 10.1021/jf103434u.

  2. Berni, R., Romi, M., Parrotta, L., Cai, G. & Cantini, C. (2018). Ancient tomato (Solanum lycoersicum L.) varieties of Tuscany have high contents of bioactive compounds. Horticulturae, 4, 51. 10.3390/horticulturae4040051.

  3. Blancas-Benítez, F. J., Pérez-Jiménez, J., Montalvo-González, E., González-Aguilar, G. A. & Sáyago-Ayerdi, S. G. (2018). In vitro evaluation of the kinetics of the release of phenolic compounds from guava (Psidium guajava L.) fruit. Journal of Functional Foods, 43, 139-145. https:// doi.org/10.1016/j.jff.2018.02.011.

  4. Blancas-Benítez, F. J., Montalvo-González, E., González- Aguilar, G. A. & Sáyago-Ayerdi, S. G. (2019). Bioaccesibilidad y cinética de liberación in vitro de compuestos fenólicos en pulpas de guayaba (Psidium guajava L.) y guanábana (Annona muricata L.). TIP Revista Especializada en Ciencias Químico- Biológicas, 22, 1-7. https://doi.org/10.22201/ fesz.23958723e.2019.0.169.

  5. Bohn, T. (2014). Dietary factors affecting polyphenol bioavailability. Nutrition Reviews, 72(7), 429-452. https:// doi.org/10.1111/nure.12114.

  6. Bouayed, J., Deußer, H., Hoffmann, L. & Bohn, T. (2012). Bioaccessible and dialysable polyphenols in selected apple varieties following in vitro digestion vs. their native patterns. Food Chemistry, 131(4), 1466-1472. https://doi. org/10.1016/j.foodchem.2011.10.030.

  7. Bouayed, J., Hoffmann, L. & Bohn, T. (2011). Total phenolic, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chemistry, 128(1), 14-21. https://doi. org/10.1016/j.foodchem.2011.02.052.

  8. Elbadrawy, E. & Sello, A. (2016). Evaluation of nutritional value and antioxidant activity of tomato peel extracts. Arabian Journal of Chemistry, 9, 1010-1018. https://doi. org/10.1016/j.arabjc.2011.11.011.

  9. Escobedo-Avellaneda, Z., Pérez-Pérez, C., Bárcenas-Pozoz, M. E., Guerrero-Beltrán, J. A. & Welti-Chanes, J. (2011). Analysis of the drying process of Mexican hot salsa using the characteristic curve model. Journal of Food Processing and Preservation, 37(5), 441-448. https://doi. org/10.1111/j.1745-4549.2011.00662.x.

  10. Farrell, T. L., Dew, T. P., Poquet, L., Hanson, P. & Williamson, G. (2011). Absorption and metabolism of chlorogenic acids in cultured gastric epithelial monolayers. Drug Metabolism and Disposition, 39(12), 2338-2346. https:// doi.org/10.1124/dmd.111.040147.

  11. Fernández-García, E., Carvajal-Lérida, I. & Pérez-Gálvez, A. (2009). In vitro bioaccessibility assessment as a prediction tool of nutritional efficiency. Nutrition Research, 29(11), 751-760. https://doi.org/10.1016/j.nutres.2009.09.016.

  12. Gálvez, A. & Salinas, G. (2015). El papel del frijol en la salud nutrimental de la población mexicana. Revista Digital Universitaria, 16(2), 16.

  13. Georgé, S., Tourniaire, F., Gautier, H., Goupy, P., Rock, E. & Caris-Veyrat, C. (2011). Changes in the contents of carotenoids, phenolic compounds and vitamin C during technical processing and lyophilisation of red and yellow tomatoes. Food Chemistry, 124(4), 1603-1611. https:// doi.org/10.1016/j.foodchem.2010.08.024.

  14. Holtz, D. & Escalante, A. (2012). La tacopedia: enciclopedia del taco. Trilce. Ciudad de México, México Pp.: 67-74. http://dx.doi.org/10.1590/1678-457X.6729.

  15. Juániz, I., Ludwig, I. A., Bresciani, L., Dall’Asta, M., Mena, P., Del Rio, D. & de Peña, M. P. (2016). Catabolism of raw and cooked green pepper (Capsicu mannuum) (poly) phenolic compounds after simulated gastrointestinal digestion and faecal fermentation. Journal of Functional Foods, 27, 201-213. https://doi.org/10.1016/j.jff.2016.09.006. Kamiloglu, S., Boyacioglu, D. & Capanoglu, E. (2013). The effect of food processing on bioavailability of tomato antioxidants. Journal of Berry Research, 3(2), 65-77. https://doi.org/10.3233/JBR-130051.

  16. Kamiloglu, S., Demirci, M., Selen, S., Toydemir, G., Boyacioglu, D. & Capanoglu, E. (2014). Home processing of tomatoes (Solanum lycopersicum): effects on in vitro bioaccessibility of total lycopene, phenolics, flavonoids, and antioxidant capacity. Journal of the Science of Food and Agriculture, 94(11), 2225-2233. https://doi. org/10.1002/jsfa.6546.

  17. Lafay, S. & Gil-Izquierdo, A. (2008). Bioavailability of phenolic acids. Phytochemistry Reviews, 7(2), 301. https://doi.org/ 10.1007/s11101-007-9077-x.

  18. Liguori, L., Califano, R., Albanese, D., Raimo, F., Crescitelli, A. & Di Matteo, M. (2017). Chemical Composition and Antioxidant Properties of Five White Onion (Allium cepa L.) Landraces. Journal of Food Quality, Vol. 2017, Article ID 6873651, 1-9. https://doi.org/10.1155/2017/6873651.

  19. Liu, R.H. (2007). Whole grain phytochemicals and health. Journal of Cereal Science, 46 (3), 207-219. https://doi. org/10.1016/j.jcs.2007.06.010.

  20. Manach, C., Scalbert, A., Morand, C., Rémésy, C. & Jiménez, L. (2004). Polyphenols: food sources and bioavailability. American Journal of Clinical Nutrition, 79(5), 727-747. 10.1093/ajcn/79.5.727.

  21. Mercado- Mercado, G., Blancas- Benítez, F. J., Valderrain- Rodriguez, G. R., Montalvo-González, E., González- Aguilar, G. A., Álvarez-Parrilla, E. & Sayago-Ayerdi, S. G. (2015). Bioaccessibility of polyphenols released and associated to dietary fiber in calyces and decoction residues of Roselle (Hibiscus sabdariffa L.). Journal of Functional Foods, 18, 171-181. https://doi.org/10.1016/j. jff.2015.07.001.

  22. Mercado-Mercado, G., Montalvo-González, E., González- Aguilar, G.A., Álvarez-Parrilla, E. & Sáyago- Ayerdi, S.G. (2018). Ultrasound-assisted extraction of carotenoids from mango (Mangifera indica L. ‘Ataulfo’) by-products on in vitro bioaccessibility. Food Bioscience, 21, 125-131. https://doi.org/10.1016/j. fbio.2017.12.012.

  23. Montreau, F. (1972). Sur le dosage des composes phénolique stotaux dans les vins par la method Folin-Cioucalteu. Connais Vigne, 24, 397-404. https://doi.org/10.20870/ oeno-one.1972.6.4.2071.

  24. Nagella, P., Thiruvengadam, M., Ahmad, A., Yoon, J. Y. & Chung, I. M. (2014). Composition of Polyphenols and Antioxidant Activity of Garlic Bulbs Collected from Different Locations of Korea. Asian Journal of Chemistry, 26(3), 897.

  25. Oganesyan, E. T., Nersesyan, Z. M. & Parkhomenko, A. Y. (2007). Chemical composition of the above-ground part of Coriandrum sativum. Pharmaceutical Chemistry Journal, 41(3), 149-153.

  26. Ostrzycka, J., Horrowicz, M., Dobrzanski, W., Jankiewicz, L.S. & Bokkowski, J. (1988). Nutritive value of tomatillo fruit (Physalis ixocarpa Brot.). Acta Societatis Botanicorum Polaniae, 57(4), 507-521. http://doi. org/10.5586/asbp.1988.049.

  27. Pérez-Jiménez, J., Arranz, S., Tabernero, M., Díaz-Rubio, M. E., Serrano, J., Goñi, I. & Saura-Calixto, F. (2008). Updated methodology to determine antioxidant capacity in plant foods, oils and beverages: Extraction, measurement and expression of results. Food Research International, 41(3), 274-285. https://doi.org/10.1016/j. foodres.2007.12.004.

  28. Phan, A. D. T., Netzel, G., Wang, D., Flanagan, B. M., D’Arcy, B. R. & Gidley, M. J. (2015). Binding of dietary polyphenols to cellulose: Structural and nutritional aspects. Food Chemistry, 171, 388-396. https://doi. org/10.1016/j.foodchem.2014.08.118.

  29. Quirós-Sauceda, A. E., Palafox-Carlos, H., Sáyago-Ayerdi, S. G., Ayala-Zavala, J. F., Bello-Pérez, L. A., Álvarez- Parrilla, E. & González-Aguilar, G. A. (2014). Dietary fiber and phenolic compounds as functional ingredients: interaction and possible effect after ingestion. Food & Function, 5(6), 1063-1072. https://doi.org/ 10.1039/ c4fo00073k.

  30. Raffo, A., Leonardi, C., Fogliano, V., Ambrosino, P., Salucci, M., Gennaro, L., Bugianesi, R. Giuffrida, F. & Quaglia, G. (2002). Nutritional value of cherry tomatoes (Lycopersicon esculentum Cv. Naomi F1) harvested at different ripening stages. Journal of Agriculture and Food Chemistry, 50(22), 6550-6556. http://dx.doi.org/10.1021/ jf020315t.

  31. Rivas-García, H. (1991). Cocina prehispánica mexicana: la comida de los antiguos mexicanos. Panorama Editorial. México. ISBN: 978-607-452-545-8. 168 p

  32. Rodríguez-Arredondo, A., Maldonado-Garfias, C., Sosa- Morales, Ma. E. & Cerón-García, A. (2018). Evaluación de compuestos bioactivos y propiedades fisicoquímicas de cáscaras de tomate verde (Physalis spp.) bajo diferentes condiciones de procesamiento. Investigación y Desarrollo en Ciencia y Tecnología de Alimentos, 3, 205-209.

  33. Saura-Calixto, F., Serrano, J. & Goñi, I. (2007). Intake and bioaccessibility of total polyphenols in a whole diet. Food Chemistry, 101(2), 492-501. https://doi.org/10.1016/j. foodchem.2006.02.006.

  34. Sensoy, I. (2014). A review on the relationship between food structure, processing, and bioavailability. Critical Reviews in Food Science and Nutrition, 54(7), 902–909. https://doi.org/10.1080/10408398.2011.619016.

  35. Simin, N., Orcic, D., Cetojevic-Simin, D., Mimica-Dukic, N., Anackov, G., Beara, I. & Bozin, B. (2013). Phenolic profile, antioxidant, anti-inflammatory and cytotoxic activities of small yellow onion (Allium flavum L. subsp. flavum, Alliaceae). LWT-Food Science and Technology, 54(1), 139-146. https://doi.org/10.1016/j. lwt.2013.05.023.

  36. Tagliazucchi, D., Verzelloni, E., Bertolini, D. & Conte, A. (2010). In vitro bio-accessibility and antioxidant activity of grape polyphenols. Food Chemistry, 120(2), 599-606. https://doi.org/10.1016/j.foodchem.2009.10.030.

  37. Tomas, M., Beekwilder, J., Hall, R. D., Simon, C.D., Sagdie, O. & Capanoglu, E. (2018). Effect of dietary fiber (inulin) addition on phenolic and in vitro bioaccessibility of tomato sauce. Food Research International, 106,129- 135. https://doi.org/10.1016/j. foodres.2017.12.050.

  38. Wu, X., Ding, H., Hu, X., Pan, J., Liao, Y., Gong, D. & Zhang, G. (2018). Exploring inhibitory mechanism of gallocatechin gallate on α-amylase and α-glucosidase relevant to postprandial hyperglycemia. Journal of Functional Foods, 48, 200-209. https://doi.org/10.1016/j. jff.2018.07.022.

  39. Zhong, L., Yuan, Z., Rong, L., Zhang, Y., Xiong, G., Liu, Y. & Li, C. (2019). An optimized method for extraction and characterization of phenolic compounds in Dendranthema indicum var. aromaticum flower. Scientific Reports, 9, 7745. https://doi.org/10.1038/s41598-019-44102-9.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2020;23

ARTíCULOS SIMILARES

CARGANDO ...