medigraphic.com
ENGLISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Digital)
ISSN 1405-888X (Impreso)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2020, Número 1

<< Anterior Siguiente >>

TIP Rev Esp Cienc Quim Biol 2020; 23 (1)


Evidencias de transmisión intergeneracional de la obesidad y sus comorbilidades

Larqué VCA, Escalona MJR
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 35
Paginas: 1-7
Archivo PDF: 403.98 Kb.


PALABRAS CLAVE

obesidad, intergeneracionalidad, herencia, metabolismo, desarrollo, programación metabólica.

RESUMEN

Actualmente, a nivel mundial se está atravesando por una transición epidemiológica en la que las enfermedades infecciosas han dejado de ser las principales causas de muerte, ahora las enfermedades crónico-degenerativas son cada vez más prevalentes. El aumento global del sobrepeso y la obesidad tiene un papel primordial en esta transición, siendo factores de riesgo para desarrollar desórdenes metabólicos, enfermedades cardiovasculares y algunos tipos de cáncer. Por lo tanto, resulta una prioridad el estudio de todos los factores asociados al desarrollo del sobrepeso y la obesidad. El objetivo de esta nota científica, es señalar que la obesidad y sus comorbilidades tienen efectos sobre la programación metabólica durante la gestación, por lo que pueden aumentar el riesgo en la descendencia (más allá de una generación) de desarrollarlas. La hipótesis de que las enfermedades crónico-degenerativas (obesidad, hipertensión, diabetes mellitus tipo 2 o enfermedades cardiovasculares), que generalmente se presentan en la edad adulta se originen durante el desarrollo del individuo parece poco probable. Sin embargo, existe evidencia tanto epidemiológica como experimental, que demuestra que el estado nutricional y metabólico de ambos padres previo a la concepción y de la madre durante la gestación, pueden repercutir en la salud de su progenie durante la vida adulta.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Aagaard-Tillery, K. M., Grove, K., Bishop, J., Ke, X., Fu, Q., McKnight, R. & Lane, R. H. (2008). Developmental origins of disease and determinants of chromatin structure: maternal diet modifies the primate fetal epigenome. Journal of Molecular Endocrinology, 41(2), 91–102. https://doi.org/10.1677/JME-08-0025

  2. Barathikannan, K., Chelliah, R., Rubab, M., Daliri, E. B., Elahi, F., Kim, D. H., Agastian, P., Oh, S. Y. & Oh, D. H. (2019). Gut Microbiome Modulation Based on Probiotic Application for Anti-Obesity: A Review on Efficacy and Validation. Microorganisms, 7(10), 456. https://doi. org/10.3390/microorganisms7100456

  3. Brumbaugh, D. E., Tearse, P., Cree-Green, M., Fenton, L. Z., Brown, M., Scherzinger, A., Reynolds, R., Alston, M., Hoffman, C., Pan, Z., Friedman, J. E. & Barbour, L. A. (2013). Intrahepatic fat is increased in the neonatal offspring of obese women with gestational diabetes. The Journal of pediatrics, 162(5), 930–6.e1. https://doi. org/10.1016/j.jpeds.2012.11.017

  4. Cresswell, J. L., Barker, D. J., Osmond, C., Egger, P., Phillips, D. I. & Fraser, R. B. (1997). Fetal growth, length of gestation, and polycystic ovaries in adult life. Lancet (London, England), 350(9085), 1131–1135. https://doi. org/10.1016/s0140-6736(97)06062-5

  5. de Castro Barbosa, T., Ingerslev, L. R., Alm, P. S., Versteyhe, S., Massart, J., Rasmussen, M., Donkin, I., Sjögren, R., Mudry, J. M., Vetterli, L., Gupta, S., Krook, A., Zierath, J. R., & Barrès, R. (2015). High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring. Molecular metabolism, 5(3), 184–197. https://doi.org/10.1016/j. molmet.2015.12.002

  6. Dörner, G. (1975). Perinatal hormone levels and brain organization. In Anatomical neuroendocrinology (pp. 245-252). Karger Publishers.

  7. Friedman, J. E. (2018). Developmental Programming of Obesity and Diabetes in Mouse, Monkey, and Man in 2018: Where Are We Headed? Diabetes, 67(11), 2137– 2151. https://doi.org/10.2337/dbi17-0011

  8. Gaillard, R., Steegers, E. A., Duijts, L., Felix, J. F., Hofman, A., Franco, O. H. & Jaddoe, V. W. (2014). Childhood cardiometabolic outcomes of maternal obesity during pregnancy: the Generation R Study. Hypertension (Dallas, Tex. : 1979), 63(4), 683–691. https://doi.org/10.1161/ HYPERTENSIONAHA.113.02671

  9. Godfrey, K. M., Reynolds, R. M., Prescott, S. L., Nyirenda, M., Jaddoe, V. W., Eriksson, J. G. & Broekman, B. F. (2017). Influence of maternal obesity on the longterm health of offspring. The lancet. Diabetes & endocrinology, 5(1), 53–64. https://doi.org/10.1016/ S2213-8587(16)30107-3

  10. Gomez de Agüero, M., Ganal-Vonarburg, S. C., Fuhrer, T., Rupp, S., Uchimura, Y., Li, H., Steinert, A., Heikenwalder, M., Hapfelmeier, S., Sauer, U., McCoy, K. D. & Macpherson, A. J. (2016). The maternal microbiota drives early postnatal innate immune development. Science (New York, N.Y.), 351(6279), 1296–1302. https:// doi.org/10.1126/science.aad2571

  11. Håberg, S. E., Stigum, H., London, S. J., Nystad, W. & Nafstad, P. (2009). Maternal obesity in pregnancy and respiratory health in early childhood. Paediatric and perinatal epidemiology, 23(4), 352–362. https://doi. org/10.1111/j.1365-3016.2009.01034.x

  12. Hernandez, T. L., Friedman, J. E., Barbour, L. A. (2020) Insulin Resistance in Pregnancy: Implications for Mother and Offspring. En: Zeitler, P., Nadeau, K. (eds) Insulin Resistance. Contemporary Endocrinology. Humana, Cham. https://doi.org/10.1007/978-3-030-25057-7_5

  13. Isa, T., Yamane, I., Hamai, M. & Inagaki, H. (2009). Japanese macaques as laboratory animals. Experimental animals, 58(5), 451–457. https://doi.org/10.1538/expanim.58.451

  14. Kaati, G., Bygren, L. O. & Edvinsson, S. (2002). Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. European journal of human genetics, EJHG, 10(11), 682–688. https://doi.org/10.1038/sj.ejhg.5200859

  15. Kirk, S. L., Samuelsson, A. M., Argenton, M., Dhonye, H., Kalamatianos, T., Poston, L., Taylor, P. D. & Coen, C. W. (2009). Maternal obesity induced by diet in rats permanently influences central processes regulating food intake in offspring. PloS one, 4(6), e5870. https://doi. org/10.1371/journal.pone.0005870

  16. Knight, B., Shields, B. M., Hill, A., Powell, R. J., Wright, D. & Hattersley, A. T. (2007). The impact of maternal glycemia and obesity on early postnatal growth in a nondiabetic Caucasian population. Diabetes care, 30(4), 777–783. https://doi.org/10.2337/dc06-1849

  17. Li, Y. (2018). Epigenetic Mechanisms Link Maternal Diets and Gut Microbiome to Obesity in the Offspring. Frontiers in genetics, 9, 342. https://doi.org/10.3389/ fgene.2018.00342

  18. Linares Segovia, B., Gutiérrez Tinoco, M., Izquierdo Arrizon, A., Guízar Mendoza, J. M. & Amador Licona, N. (2012). Long-term consequences for offspring of paternal diabetes and metabolic syndrome. Experimental diabetes research, 2012, 684562. https://doi.org/10.1155/2012/684562

  19. Lindell, N., Carlsson, A., Josefsson, A. & Samuelsson, U. (2018). Maternal obesity as a risk factor for early childhood type 1 diabetes: a nationwide, prospective, population-based case-control study. Diabetologia, 61(1), 130–137. https://doi.org/10.1007/s00125-017-4481-2

  20. Lucas, A., Morley, R., Cole, T. J., Gore, S. M., Lucas, P. J., Crowle, P., Pearse, R., Boon, A. J. & Powell, R. (1990). Early diet in preterm babies and developmental status at 18 months. Lancet (London, England), 335(8704), 1477– 1481. https://doi.org/10.1016/0140-6736(90)93026-l

  21. Lumey, L. H., Stein, A. D., Kahn, H. S. & Romijn, J. A. (2009). Lipid profiles in middle-aged men and women after famine exposure during gestation: the Dutch Hunger Winter Families Study. The American journal of clinical nutrition, 89(6), 1737–1743. https://doi.org/10.3945/ ajcn.2008.27038

  22. Ma, J., Prince, A. L., Bader, D., Hu, M., Ganu, R., Baquero, K., Blundell, P., Alan Harris, R., Frias, A. E., Grove, K. L. & Aagaard, K. M. (2014). High-fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model. Nature communications, 5, 3889. https://doi.org/10.1038/ncomms4889

  23. McCurdy, C. E., Bishop, J. M., Williams, S. M., Grayson, B. E., Smith, M. S., Friedman, J. E. & Grove, K. L. (2009). Maternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates. The Journal of clinical investigation, 119(2), 323–335. https://doi.org/10.1172/ JCI32661

  24. Ng, S. F., Lin, R. C., Laybutt, D. R., Barres, R., Owens, J. A. & Morris, M. J. (2010). Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature, 467(7318), 963–966. https://doi.org/10.1038/ nature09491

  25. Nomura, Y., Lambertini, L., Rialdi, A., Lee, M., Mystal, E. Y., Grabie, M., Manaster, I., Huynh, N., Finik, J., Davey, M., Davey, K., Ly, J., Stone, J., Loudon, H., Eglinton, G., Hurd, Y., Newcorn, J. H. & Chen, J. (2014). Global methylation in the placenta and umbilical cord blood from pregnancies with maternal gestational diabetes, preeclampsia, and obesity. Reproductive sciences (Thousand Oaks, Calif.), 21(1), 131–137. https://doi. org/10.1177/1933719113492206

  26. Organización Mundial de la Salud (2020, abril 1). Obesidad y sobrepeso. https://www.who.int/es/news-room/factsheets/ detail/obesity-and-overweight

  27. Saben, J. L., Boudoures, A. L., Asghar, Z., Thompson, A., Drury, A., Zhang, W., Chi, M., Cusumano, A., Scheaffer, S. & Moley, K. H. (2016). Maternal Metabolic Syndrome Programs Mitochondrial Dysfunction via Germline Changes across Three Generations. Cell reports, 16(1), 1–8. https://doi.org/10.1016/j.celrep.2016.05.065

  28. Samuelsson, A. M., Matthews, P. A., Argenton, M., Christie, M. R., McConnell, J. M., Jansen, E. H., Piersma, A. H., Ozanne, S. E., Twinn, D. F., Remacle, C., Rowlerson, A., Poston, L. & Taylor, P. D. (2008). Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance: a novel murine model of developmental programming. Hypertension (Dallas, Tex.: 1979), 51(2), 383–392. https://doi.org/10.1161/ HYPERTENSIONAHA.107.101477

  29. Schulz, L. C. (2010). The Dutch Hunger Winter and the developmental origins of health and disease. Proceedings of the National Academy of Sciences of the United States of America, 107(39), 16757–16758. https://doi. org/10.1073/pnas.1012911107

  30. Sebire, N. J., Jolly, M., Harris, J. P., Wadsworth, J., Joffe, M., Beard, R. W., Regan, L. & Robinson, S. (2001). Maternal obesity and pregnancy outcome: a study of 287,213 pregnancies in London. International journal of obesity and related metabolic disorders: journal of the International Association for the Study of Obesity, 25(8), 1175–1182. https://doi.org/10.1038/sj.ijo.0801670

  31. Secretaría de Salud, Instituto Nacional de Salud Pública (INSP) e Instituto Nacional de Estadística y Geografía (INEGI). Encuesta Nacional de Salud y nutrición: Resultados Nacionales 2018. https://ensanut.insp.mx/ encuestas/ensanut2018/doctos/informes/ensanut_2018_ presentacion_resultados.pdf

  32. Slyvka, Y., Zhang, Y. & Nowak, F. V. (2015). Epigenetic effects of paternal diet on offspring: emphasis on obesity. Endocrine, 48(1), 36–46. https://doi.org/10.1007/s12020- 014-0328-5

  33. Soderborg, T. K., Clark, S. E., Mulligan, C. E., Janssen, R. C., Babcock, L., Ir, D., Young, B., Krebs, N., Lemas, D. J., Johnson, L. K., Weir, T., Lenz, L. L., Frank, D. N., Hernandez, T. L., Kuhn, K. A., D’Alessandro, A., Barbour, L. A., El Kasmi, K. C. & Friedman, J. E. (2018). The gut microbiota in infants of obese mothers increases inflammation and susceptibility to NAFLD. Nature communications, 9(1), 4462. https://doi.org/10.1038/ s41467-018-06929-0

  34. Veenendaal, M. V., Painter, R. C., de Rooij, S. R., Bossuyt, P. M., van der Post, J. A., Gluckman, P. D., Hanson, M. A. & Roseboom, T. J. (2013). Transgenerational effects of prenatal exposure to the 1944-45 Dutch famine. BJOG: an international journal of obstetrics and gynaecology, 120(5), 548–553. https://doi.org/10.1111/1471- 0528.12136

  35. Zhou, L. & Xiao, X. (2018). The role of gut microbiota in the effects of maternal obesity during pregnancy on offspring metabolism. Bioscience reports, 38(2), BSR20171234. https://doi.org/10.1042/BSR20171234




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2020;23

ARTíCULOS SIMILARES

CARGANDO ...