medigraphic.com
ENGLISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Digital)
ISSN 1405-888X (Impreso)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2020, Número 1

<< Anterior

TIP Rev Esp Cienc Quim Biol 2020; 23 (1)


El ciclo de Randle, el precario vínculo entre azúcares y grasas

Matus-Ortega G, Romero-Aguilar L, González J, Guerra SG, Matus-Ortega M, del Castillo-Falconi V, Pardo JP
Texto completo Cómo citar este artículo Artículos similares

Idioma: Ingles.
Referencias bibliográficas: 67
Paginas: 1-10
Archivo PDF: 290.21 Kb.


PALABRAS CLAVE

síndrome metabólico, hepatotoxicidad, fructosa, lipogénesis, mTORC1, AMPK, dislipidemia, ciclo de Randle.

RESUMEN

La obesidad es un problema de salud global, asociada con enfermedades cardiovasculares. El análisis de la relación existente entre el elevado consumo de glucosa y la concomitante formación de depósitos de grasa, descrita por el ciclo de Randle, permitirá desarrollar una comprensión de los procesos metabólicos involucrados en el balance entre la formación y la degradación de los lípidos. Esta revisión tiene como objetivo, proporcionar una actualización del ciclo y de sus diferentes niveles de regulación, así como la participación de mTORC1 y la cinasa dependiente de AMP (AMPK) durante el estado postprandial y de ayuno.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Abdelmalek, M. F, Lazo, M., Horska, A., Bonekamp, S., Lipkin, E. W., Balasubramanyam, A., Bantle, J. P., Johnson, R. J., Diehl, A. M. & Clark, J. M. Fatty Liver Subgroup of Look AHEAD Research Group. (2012). Higher dietary fructose is associated with impaired hepatic adenosine triphosphate homeostasis in obese individuals with type 2 diabetes. Hepatology, 56(3), 952- 960. DOI: 10.1002/hep.25741

  2. Aguilar, L. R. , Pardo, J. P., Lomelí, M. M., Bocardo, O. I. L., Juárez Oropeza, M. A. & Guerra Sánchez, G. (2017). Lipid droplets accumulation and other biochemical changes induced in the fungal pathogen Ustilago maydis under nitrogen-starvation. Arch. Microbiol., 199(8):1195- 1209. DOI: 10.1007/s00203-017-1388-8

  3. Ameer, F., Scandiuzzi, L., Hasnain, S., Kalbacher, H. & Zaidi, N. (2014). De novo lipogenesis in health and disease. Metabolism, 63 (7), 895-902. DOI: 10.1016/j. metabol.2014.04.003

  4. Asati, V., Mahapatra, D. K. & Bharti, S. K. (2016). PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: Structural and pharmacological perspectives. Eur. J. Med. Chem., 109, 314-341. DOI: 10.1016/j.ejmech.2016.01.012

  5. Baena, M., Sanguesa, G., Hutter, N., Sánchez, R. M., Roglans, N., Laguna, J. C. & Alegret, M. (2015). Fructose supplementation impairs rat liver autophagy through mTORC activation without inducing endoplasmic reticulum stress. Biochim. Biophys. Acta, 1851(2), 107- 116. DOI: 10.1016/j.bbalip.2014.11.003

  6. Barbosa, A. D. & Siniossoglou, S. (2017). Function of lipid droplet-organelle interactions in lipid homeostasis. Biochim. Biophys. Acta Mol. Cell Res., 1864(9), 1459- 1468. DOI: 10.1016/j.bbamcr.2017.04.001

  7. Bartelt, A., Weigelt, C., Cherradi, M. L., Niemeier, A., Todter, K., Heeren, J. & Scheja, L. (2013). Effects of adipocyte lipoprotein lipase on de novo lipogenesis and white adipose tissue browning. Biochim Biophys Acta, 1831(5), 934-942. DOI: 10.1016/j.bbalip.2012.11.011

  8. Basaranoglu, M., Basaranoglu, G., Sabuncu, T. & Senturk, H. (2013). Fructose as a key player in the development of fatty liver disease. World J. Gastroenterol., 19(8), 1166- 1172. DOI: 10.3748/wjg.v19.i8.1166

  9. Bray, G. A. (2013). Energy and fructose from beverages sweetened with sugar or high-fructose corn syrup pose a health risk for some people. Adv. Nutr., 4(2), 220-225. DOI: 10.3945/an.112.002816

  10. Cardaci, S., Filomeni, G. & Ciriolo, M. R. (2012). Redox implications of AMPK-mediated signal transduction beyond energetic clues. J. Cell Sci., 125(Pt 9), 2115- 2125. DOI: 10.1242/jcs.095216

  11. Chen, Y., Wei, H., Liu, F. & Guan, J. L. (2014). Hyperactivation of mammalian target of rapamycin complex 1 (mTORC1) promotes breast cancer progression through enhancing glucose starvation-induced autophagy and Akt signaling. J. Biol. Chem., 289(2), 1164-1173. DOI: 10.1074/jbc. M113.526335

  12. Cheng, A. & Saltiel, A. R. (2006). More TORC for the gluconeogenic engine. Bioessays, 28(3), 231-234. DOI: 10.1002/bies.20375

  13. Choo, V. L., Viguiliouk, E., Blanco Mejia, S., Cozma, A. I., Khan, T.A., Ha, V., Wolever, T. M. S., Leiter, L. A., Vuksan, V., Kendall, C. W. C., de Souza, R. J., Jenkins, D. J. A. & Sievenpiper, J. L. (2018). Food sources of fructosecontaining sugars and glycaemic control: systematic review and meta-analysis of controlled intervention studies. BMJ, 363, k4644. DOI: 10.1136/bmj.k4644

  14. Costa Gil, J. E. & Spinedi, E. (2017). La tormentosa relación entre las grasas y el desarrollo de la diabetes mellitus de tipo 2: actualizado. Parte I. Revista Argentina de Endocrinología y Metabolismo, 54, 109–123. DOI: 10.1016/j.raem.2017.06.001

  15. Elliott, S. S., Keim, N. L., Stern, J. S., Teff, K. & Havel, P. J. (2002). Fructose, weight gain, and the insulin resistance syndrome. Am. J. Clin. Nutr., 76(5), 911-922. DOI: 10.1093/ajcn/76.5.911

  16. Feinman, R. D. & Fine, E. J. (2013). Fructose in perspective. Nutr. Metab. (Lond.), 10(1), 45. DOI: 10.1186/1743- 7075-10-45

  17. Fry, B. & Carter, J. F. (2019). Stable carbon isotope diagnostics of mammalian metabolism, a high-resolution isotomics approach using amino acid carboxyl groups. PLoS One, 14(10), e0224297. DOI: 10.1371/journal.pone.0224297

  18. Fuchs, C. D., Claudel, T., Kumari, P., Haemmerle, G., Pollheimer, M. J., Stojakovic, T., Scharnagl, H., Halilbasic, E., Gumhold, J., Silbert, D., Koefeler, H. & Trauner, M. (2012). Absence of adipose triglyceride lipase protects from hepatic endoplasmic reticulum stress in mice. Hepatology, 56(1), 270-280. DOI: 10.1002/ hep.25601

  19. Gómez Candela, C. & Palma Milla, S. (2013). Una visión global, actualizada y crítica del papel del azúcar en nuestra alimentación. Nutrición Hospitalaria, 28, 1-4.

  20. Hasenour, C. M., Ridley, D. E., James, F. D., Hughey, C. C., Donahue, E. P., Viollet, B., Foretz, M., Young, J. D. & Wasserman, D. H. (2017). Liver AMP-Activated Protein Kinase Is Unnecessary for Gluconeogenesis but Protects Energy State during Nutrient Deprivation. PLoS One, 12(1), e0170382. DOI: 10.1371/journal.pone.0170382

  21. Hilton, C., Karpe, F. & Pinnick, K. E. (2015). Role of developmental transcription factors in white, brown and beige adipose tissues. Biochim. Biophys. Acta, 1851(5), 686-696. DOI: 10.1016/j.bbalip.2015.02.003

  22. Hruby, A. & Hu, F. B. (2015). The Epidemiology of Obesity: A Big Picture. Pharmacoeconomics, 33(7), 673-689. DOI: 10.1007/s40273-014-0243-x

  23. Ishimoto, T., Lanaspa, M. A., Rivard, C. J., Roncal-Jimenez C. A., Orlicky, D. J., Cicerchi, C., McMahan, R. H., Abdelmalek, M. F., Rosen, H. R., Jackman, M. R., MacLean, P. S., Diggle, C. P., Asipu, A., Inaba, S., Kosugi, T., Sato, W., Maruyama, S., Sánchez-Lozada, L. G., Sautin, Y.Y ., Hill, J. O., Bonthron, D. T. & Johnson, R. J. (2013). High-fat and high-sucrose (western) diet induces steatohepatitis that is dependent on fructokinase. Hepatology, 58(5), 1632-1643. DOI: 10.1002/hep.26594

  24. Jamnik, J., Rehman, S., Blanco Mejia, S., de Souza, R. J, Khan, T. A., Leiter, L. A., Wolever, T. M., Kendall, C. W., Jenkins, D. J. & Sievenpiper, J. L. (2016). Fructose intake and risk of gout and hyperuricemia: a systematic review and metaanalysis of prospective cohort studies. BMJ Open, 6(10), e013191. DOI: 10.1136/bmjopen-2016-013191

  25. Jensen, T., Abdelmalek, M. F., Sullivan, S., Nadeau, K. J., Green, M., Roncal, C., Nakagawa, T., Kuwabara, M., Sato, Y., Kang, D. H., Tolan, D. R., Sanchez-Lozada, L. G., Rosen, H. R, Lanaspa, M. A., Diehl, A. M. & Johnson, R. J. (2018). Fructose and sugar: A major mediator of non-alcoholic fatty liver disease. J. Hepatol., 68(5), 1063- 1075. DOI: 10.1016/j.jhep.2018.01.019

  26. Jiang, X., Kenerson, H., Aicher, L., Miyaoka, R., Eary, J., Bissler, J. & Yeung, R. S. (2008). The tuberous sclerosis complex regulates trafficking of glucose transporters and glucose uptake. Am. J. Pathol., 172(6), 1748-1756. DOI: 10.2353/ajpath.2008.070958

  27. Ke, R., Xu, Q., Li, C., Luo, L. & Huang, D. (2018). Mechanisms of AMPK in the maintenance of ATP balance during energy metabolism. Cell Biol. In.. 42(4), 384-392. DOI: 10.1002/cbin.10915

  28. Kim, I. & He, Y. Y. (2013). Targeting the AMP-Activated Protein Kinase for Cancer Prevention and Therapy. Front. Oncol., 3, 175. DOI: 10.3389/fonc.2013.00175

  29. Kory, N., Farese, R. V., Jr. & Walther, T. C. (2016). Targeting Fat: Mechanisms of Protein Localization to Lipid Droplets. Trends Cell Biol., 26(7), 535-546. DOI: 10.1016/j.tcb.2016.02.007

  30. Kumar, A., Lawrence, J. C. Jr., Jung, D.Y., Ko, H. J., Keller, S. R., Kim, J. K., Magnuson, M. A. & Harris, T. E. (2010). Fat cell-specific ablation of rictor in mice impairs insulinregulated fat cell and whole-body glucose and lipid metabolism. Diabetes, 59(6), 1397-1406. DOI: 10.2337/ db09-1061

  31. Laughlin, M. R., Bantle, J. P., Havel, P. J., Parks, E., Klurfeld, D. M., Teff, K. & Maruvada, P. (2014). Clinical research strategies for fructose metabolism. Adv. Nutr., 5(3), 248- 259. DOI: 10.3945/an.113.005249

  32. Loza-Medrano, S. S., Baiza-Gutman, L. A., Manuel-Apolinar, L., García-Macedo, R., Damasio-Santana, L., Martínez- Mar, O. A., Sánchez-Becerra, M. C., Cruz-López, M., Ibáñez-Hernández, M. A. & Díaz-Flores, M. (2019). High fructose-containing drinking water-induced steatohepatitis in rats is prevented by the nicotinamidemediated modulation of redox homeostasis and NADPHproducing enzymes. Mol. Biol. Rep., 47(1), 337-351. DOI: 10.1007/s11033-019-05136-4

  33. Lustig, R. H. (2010). Fructose: metabolic, hedonic, and societal parallels with ethanol. J. Am. Diet. Assoc., 110(9), 1307-1321. DOI: 10.1016/j.jada.2010.06.008 Mai, B. H. & Yan, L. J. (2019). The negative and detrimental effects of high fructose on the liver, with special reference to metabolic disorders. Diabetes Metab. Syndr. Obes., 12, 821-826. DOI: 10.2147/DMSO.S198968

  34. Marcelino, H., Veyrat-Durebex, C., Summermatter, S., Sarafian, D., Miles-Chan, J., Arsenijevic, D., Zani, F., Montani, J. P., Seydoux, J., Solinas, G., Rohner- Jeanrenaud, F. & Dulloo, A. G. (2013). A role for adipose tissue de novo lipogenesis in glucose homeostasis during catch-up growth: a Randle cycle favoring fat storage. Diabetes, 62(2), 362-372. DOI: 10.2337/db12-0255

  35. Mock, K., Lateef, S., Benedito, V. A. & Tou, J. C. (2017). High-fructose corn syrup-55 consumption alters hepatic lipid metabolism and promotes triglyceride accumulation. J. Nutr. Biochem., 39, 32-39. DOI: 10.1016/j. jnutbio.2016.09.010

  36. Moran, T. H. & Ladenheim, E. E. (2016). Physiologic and Neural Controls of Eating. Gastroenterol. Clin. North. Am., 45(4), 581-599. DOI: 10.1016/j.gtc.2016.07.009

  37. Mottillo, E. P., Balasubramanian, P., Lee, Y. H., Weng, C., Kershaw, E. E. & Granneman, J. G. (2014). Coupling of lipolysis and de novo lipogenesis in brown, beige, and white adipose tissues during chronic beta3-adrenergic receptor activation. J. Lipid. Res., 55(11), 2276-2286. DOI: 10.1194/jlr.M050005

  38. Murray, R. D. (2019). 100% Fruit Juice in Child and Adolescent Dietary Patterns. J. Am. Coll. Nutr., 39(2), 122-127. DOI: 10.1080/07315724.2019.1615013

  39. Naito, T., Kuma, A. & Mizushima, N. (2013). Differential contribution of insulin and amino acids to the mTORC1- autophagy pathway in the liver and muscle. J. Biol. Chem., 288(29), 21074-21081. DOI: 10.1074/jbc.M113.456228

  40. Nakamura, M. T., Yudell, B. E. & Loor, J. J. (2014). Regulation of energy metabolism by long-chain fatty acids. Prog. Lipid. Res., 53, 124-144. DOI: 10.1016/j. plipres.2013.12.001

  41. Nelson, D. L. & Cox, M. (2017). Lehninger principles of biochemistry. W.H. Freeman . New York.

  42. Ogden, C. L., Yanovski, S. Z., Carroll, M. D. & Flegal, K. M. (2007). The epidemiology of obesity. Gastroenterology, 132(6), 2087-2102. DOI: 10.1053/j.gastro.2007.03.052

  43. Palomer, X., Salvado, L., Barroso, E. & Vazquez-Carrera, M. (2013). An overview of the crosstalk between inflammatory processes and metabolic dysregulation during diabetic cardiomyopathy. Int. J. Cardiol., 168(4), 3160-3172. DOI: 10.1016/j.ijcard.2013.07.150

  44. Pearlman, M., Obert, J. & Casey, L. (2017). The Association Between Artificial Sweeteners and Obesity. Curr. Gastroenterol. Rep., 19(12), 64. DOI: 10.1007/s11894- 017-0602-9

  45. Pereira, M. J., Thombare, K., Sarsenbayeva, A., Kamble, P. G., Almby, K., Lundqvist, M. & Eriksson, J. W. (2020). Direct effects of glucagon on glucose uptake and lipolysis in human adipocytes. Mol. Cell Endocrinol., 503, 110696. DOI: 10.1016/j.mce.2019.110696

  46. Perera, N. D. & Turner, B. J. (2016). AMPK Signalling and Defective Energy Metabolism in Amyotrophic Lateral Sclerosis. Neurochemical Research, 41(3), 544-553. DOI: 10.1007/s11064-015-1665-3

  47. Pietrocola, F., Demont, Y., Castoldi, F., Enot, D., Durand, S., Semeraro, M., Baracco, E. E., Pol, J., Bravo-San Pedro, J. M., Bordenave, C., Levesque, S., Humeau, J., Chery, A., Métivier, D., Madeo, F., Maiuri, M. C. & Kroemer, G. (2017). Metabolic effects of fasting on human and mouse blood in vivo. Autophagy, 13(3), 567-578. DOI: 10.1080/15548627.2016.1271513

  48. Possik, E., Madiraju, S. R. M. & Prentki, M. (2017). Glycerol-3-phosphate phosphatase/PGP: Role in intermediary metabolism and target for cardiometabolic diseases. Biochimie, 143, 18-28. DOI: 10.1016/j. biochi.2017.08.001

  49. Priyadarshini, E. & Anuradha, C. V. (2017). Glucocorticoid Antagonism Reduces Insulin Resistance and Associated Lipid Abnormalities in High-Fructose-Fed Mice. Can. J. Diabetes, 41(1), 41-51. DOI: 10.1016/j.jcjd.2016.06.003

  50. Quiroga, A. D. & Lehner, R. (2012). Liver triacylglycerol lipases. Biochim. Biophys. Acta, 1821(5), 762-769. DOI: 10.1016/j.bbalip.2011.09.007

  51. Quiroga, A. D. & Lehner, R. (2018). Pharmacological intervention of liver triacylglycerol lipolysis: The good, the bad and the ugly. Biochem. Pharmacol., 155, 233- 241. DOI: 10.1016/j.bcp.2018.07.005

  52. Rambold, A. S., Cohen, S. & Lippincott-Schwartz, J. (2015). Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev. Cell, 32(6), 678-692. DOI: 10.1016/j. devcel.2015.01.029

  53. Randle, P. J., Garland, P. B., Hales, C. N. & Newsholme, E. A. (1963). The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet, 1(7285), 785-789. DOI: 10.1016/s0140- 6736(63)91500-9

  54. Rodríguez Delgado, J. (2017). Azúcares... ¿los malos de la dieta? Pediatría Atención Primaria, 19, 69-75.

  55. Roglans, N., Sanguino, E., Peris, C., Alegret, M., Vázquez, M., Adzet, T., Díaz, C., Hernández, G., Laguna, J. C. & Sánchez, R. M. (2002). Atorvastatin treatment induced peroxisome proliferator-activated receptor alpha expression and decreased plasma nonesterified fatty acids and liver triglyceride in fructose-fed rats. J. Pharmacol. Exp. Ther., 302(1), 232-239. DOI: 10.1124/jpet.302.1.232

  56. Roglans, N., Vila, L., Farre, M., Alegret, M., Sánchez, R. M., Vázquez-Carrera, M. & Laguna, J. C. (2007). Impairment of hepatic Stat-3 activation and reduction of PPARalpha activity in fructose-fed rats. Hepatology, 45(3), 778-788. DOI: 10.1002/hep.21499

  57. Samuel, V. T. (2011). Fructose induced lipogenesis: from sugar to fat to insulin resistance. Trends Endocrinol. Metab., 22(2), 60-65. DOI: 10.1016/j.tem.2010.10.003

  58. Sánchez-Gurmaches, J., Tang, Y., Jespersen, N. Z., Wallace, M., Martinez Calejman, C., Gujja, S., Li, H., Edwards, Y. J. K., Wolfrum, C., Metallo, C. M., Nielsen, S., Scheele, C. & Guertin, D. A. (2018). Brown Fat AKT2 Is a Cold- Induced Kinase that Stimulates ChREBP-Mediated De Novo Lipogenesis to Optimize Fuel Storage and Thermogenesis. Cell Metab., 27(1), 195-209 e196. DOI: 10.1016/j.cmet.2017.10.008

  59. Sievenpiper, J. L., de Souza, R. J., Cozma, A. I., Chiavaroli, L., Ha, V. & Mirrahimi, A. (2014). Fructose vs. glucose and metabolism: do the metabolic differences matter? Curr. Opin. Lipidol., 25(1), 8-19. DOI: 10.1097/ MOL.0000000000000042

  60. Smith, K. B. & Smith, M. S. (2016). Obesity Statistics. Primare, 43(1), 121-135, ix. DOI: 10.1016/j.pop.2015.10.001

  61. Song, Z., Xiaoli, A. M. & Yang, F. (2018). Regulation and Metabolic Significance of De Novo Lipogenesis in Adipose Tissues. Nutrients, 10(10). DOI: 10.3390/ nu10101383

  62. Stanhope, K. L. (2016). Sugar consumption, metabolic disease and obesity: The state of the controversy. Crit. Rev. Clin. Lab. Sci., 53(1), 52-67. DOI: 10.3109/10408363.2015.1084990

  63. Summermatter, S., Marcelino, H., Arsenijevic, D., Buchala, A., Aprikian, O., Assimacopoulos-Jeannet, F., Seydoux, J., Montani, J. P., Solinas, G. & Dulloo, A. G. (2009). Diabetes, 58(10), 2228-2237. DOI: 10.2337/db08-1793

  64. Ter Horst, K. W. & Serlie, M. J. (2017). Fructose Consumption, Lipogenesis, and Non-Alcoholic Fatty Liver Disease. Nutrients, 9(9). DOI: 10.3390/nu9090981

  65. Verges, B. (2018). mTOR and Cardiovascular Diseases: Diabetes Mellitus. Transplantation, 102(2S Suppl 1), S47-S49. DOI: 10.1097/TP.0000000000001722

  66. Yoon, M-S. (2017). The Role of Mammalian Target of Rapamycin (mTOR) in Insulin Signaling. Nutrients 2017, 9, 1176. DOI:10.3390/nu9111176

  67. World Health Organization. World Health Statistics (2018): Monitoring Health for the SDGs., 2018.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2020;23

ARTíCULOS SIMILARES

CARGANDO ...