medigraphic.com
ENGLISH

Salud Pública de México

Instituto Nacional de Salud Pública
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2021, Número 1

<< Anterior Siguiente >>

salud publica mex 2021; 63 (1)


Revisión rápida: monitoreo de la presencia e infectividad del virus SARS-CoV-2 y otros coronavirus en aguas residuales

Cruz-Cruz C, Rodríguez-Dozal S, Cortez-Lugo M, Ovilla-Muñoz M, Carnalla-Cortés M, Sánchez-Pájaro A, Schilmann A
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 50
Paginas: 109-119
Archivo PDF: 312.63 Kb.


PALABRAS CLAVE

SARS-CoV-2, aguas residuales, presencia, infectividad.

RESUMEN

Objetivo. Describir la evidencia sobre la presencia e infectividad de SARS-CoV-2 y otros coronavirus en aguas residuales y su potencial uso como herramienta de vigilancia epidemiológica. Material y métodos. Búsqueda de publicaciones en PubMed y medRxiv desde enero 2003 hasta el 8 de junio de 2020 de acuerdo con la guía de revisiones rápidas de Cochrane. Resultados. Se incluyeron 29 publicaciones. El ARN de SARS-CoV-2 no infectivo se encontró en agua residual hospitalaria, agua residual cruda, tratada y lodos de plantas de tratamiento. Los niveles cuantitativos de ARN viral en agua residual presentan relación con el número de casos de Covid-19. SARS-CoV-1 y otros coronavirus permanecieron infectivos en agua residual cruda hasta por dos días. Conclusiones. Hasta esta revisión no existe evidencia sobre la presencia de virus infectivos de SARS-CoV-2 en agua residual cruda o tratada. La cuantificación de ARN de SARS-CoV-2 en agua residual es útil para la vigilancia epidemiológica.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Cucinotta D, Vanelli M. WHO Declares COVID-19 a Pandemic. Acta Biomed. 2020;91(1):157-60. https://doi.org/10.23750/abm.v91i1.9397

  2. Xu S, Li Y. Beware of the second wave of COVID-19. Lancet. 2020;395(10233):1321-2. https://doi.org/10.1016/S0140-6736(20)30845-X

  3. Secretaría de Salud. Conferencia 29 de Febrero [internet]. México: SS, 2020 [citado mayo 28, 2020]. Disponible en: https://coronavirus.gob. mx/2020/02/29/conferencia-29-de-febrero/

  4. World Health Organization, United Nations Children’s Fund. Water, sanitation, hygiene and waste management for the COVID-19 virus. Ginebra: OMS/Unicef, 2020 [citado julio 20, 2020]. Disponible en: https://www.who. int/publications/i/item/water-sanitation-hygiene-and-waste-managementfor- covid-19

  5. Jiang X, Luo M, Zou Z, Wang X, Chen C, Qiu J. Asymptomatic SARSCoV- 2 infected-case with viral detection positive in stool but negative in nasopharyngeal samples lasts for 42 days. J Med Virol. 2020;92(10):1807-9. https://doi.org/10.1002/jmv.25941

  6. Liu J, Xiao Y, Shen Y, Shi C, Chen Y, Shi P, et al. Detection of SARS-CoV-2 by RT-PCR in anal from patients who have recovered from coronavirus disease 2019. J Med Virol. 2020;92(10):1769-71. https://doi.org/10.1002/ jmv.25875

  7. Wu Y, Guo C, Tang L, Hong Z, Zhou J, Dong X, et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol Hepatol. 2020;5(5):434-5. https://doi.org/10.1016/S2468-1253(20)30083-2

  8. Xu Y, Li X, Zhu B, Liang H, Fang C, Gong Y, et al. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat Med. 2020;26(4):502-5. https://doi.org/10.1038/s41591- 020-0817-4

  9. Pan Y, Zhang D, Yang P, Poon LLM, Wang Q. Viral load of SARS-CoV-2 in clinical samples. Lancet Infect Dis. 2020;20(4):411-2. https://doi. org/10.1016/S1473-3099(20)30113-4

  10. Zhang N, Gong Y, Meng F, Shi Y, Eang J, Mao P, et al. Comparative study on virus shedding patterns in nasopharyngeal and fecal specimens of COVID-19 patients. Sci China Life Sci. 2020;1-3. https://doi.org/10.1007/ s11427-020-1783-9

  11. Hung LS.The SARS Epidemic in Hong Kong: What Lessons have we Learned? J R Soc Med. 2003;96(8):374-8. https://doi. org/10.1177/014107680309600803

  12. Gormley M, Aspray TJ, Kelly DA. COVID-19: mitigating transmission via wastewater plumbing systems. Lancet Glob Health. 2020;8(5):e643. https://doi.org/10.1016/S2214-109X(20)30112-1

  13. Comisión Nacional del Agua. Compendio Estadístico de Administración del Agua (CEAA), edición 2012 [internet]. México, DF: Secre taría de Medio Ambiente y Recursos Naturales, 2012 [citado junio 28, 2020]. Disponible en: http://webcache.googleusercontent.com/ search?q=cache:U4f0b__uvUoJ:www.conagua.gob.mx/CONAGUA07/Publicaciones/ Publicaciones/SGAA-8-12.pdf+&cd=1&hl=en&ct=clnk&gl=mx

  14. Cisneros OX, Saucedo H. Reúso de aguas residuales en la agricultura. Jiutepec, Morelos: Instituto Mexicano de Tecnología del Agua, 2016.

  15. Comisión Nacional del Agua. Situación del Subsector Agua Potable, Alcantarillado y Saneamiento. Edición 2012 [internet]. México, DF: Secretaría de Medio Ambiente y Recursos Naturales, 2012 [citado mayo 4, 2020]. Disponible en: https://www.google.com/url?q=http://www.conagua.gob.mx/ CONAGUA07/Publicaciones/Publicaciones/SGAPDS-40-12.pdf&sa=U&ved= 0CAUQFjAAahUKEwjhpozSionIAhUHB5IKHfxFAZM&client=internal-u ds-cse&usg=AFQjCNGEwWGWRsYYcikgxVwzUfgoEcb3Fg

  16. Siebe C, Cifuentes E. Environmental impact of wastewater irrigation in central Mexico: An overview. Int J Environ Health Res. 1995;5(2):161-73. https://doi.org/10.1080/09603129509356845

  17. Siebe C. Nutrient inputs to soils and their uptake by alfalfa through long-term irrigation with untreated sewage effluent in Mexico. Soil Use Manag. 1998;14(2):119-22. https://doi.org/10.1111/j.1475-2743.1998. tb00628.x

  18. Comisión Nacional del Agua. Estadísticas del Agua en México, edición 2018 [internet]. Ciudad de México: Secretaría del Medio Ambiente y Recursos Naturales, 2018 [citado mayo 4, 2020]. Disponible en: https:// sina.conagua.gob.mx/publicaciones/EAM_2018.pdf

  19. Garritty C, Gartlehner G, Kamel C, King VJ, Nussbaumer-Streit B, Stevens A, et al. Cochrane rapid reviews interim guidance from the Cochrane [internet] Ginebra: World Health Organization, 2020 [citado junio 28, 2020]. Disponible en: https://methods.cochrane.org/rapidreviews/sites/ methods.cochrane.org.rapidreviews/files/public/uploads/cochrane_rr_-_ guidance-23mar2020-final.pdf

  20. Schilmann A. Quick review: Monitoring the presence and infectivity of SARS-CoV-2 and other coronaviruses in wastewater. Data extraction table. Harvard Dataverse, 2020. https://doi.org/10.7910/DVN/CUEZWU

  21. Wang J, Feng H, Zhang S, Ni Z, Ni L, Chen Y, et al. SARS-CoV-2 RNA detection of hospital isolation wards hygiene monitoring during the Coronavirus Disease 2019 outbreak in a Chinese hospital. Int J Infect Dis. 2020;94(1):103-6. https://doi.org/10.1016/j.ijid.2020.04.024

  22. Rimoldi SG, Stefani F, Gigantiello A, Polesello S, Comandatore F, Mileto D, et al. Presence and vitality of SARS-CoV-2 virus in wastewaters and rivers. Sci Total Environ. 2020;744:140911. https://doi.org/10.1016/j.scitotenv. 2020.140911

  23. Wurtzer S, Marechal V, Mouchel JM, Moulin L. Time course quantitative detection of SARS-CoV-2 in Parisian wastewaters correlates with COVID-19 confirmed cases. MedRxiv [preprint]. 2020. https://doi.org/10.1 101/2020.04.12.20062679

  24. Randazzo W, Truchado P, Cuevas-Ferrando E, Simón P, Allende A, Sánchez G. SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. Water Res. 2020;181(1):115942. https:// doi.org/10.1016/j.watres.2020.115942

  25. Randazzo W, Cuevas-Ferrando E, Sanjuan R, Domingo-Calap P, Sanchez G. Metropolitan wastewater analysis for COVID-19 epidemiological surveillance. Int J Hyg Environ Health. 2020;230:113621. https://doi. org/10.1016/j.ijheh.2020.113621

  26. Haramoto E, Malla B, Thakali O, Kitajima M. First environmental surveillance for the presence of SARS-CoV-2 RNA in wastewater and river water in Japan. Sci Total Environ. 2020;737:140405. https://doi.org/10.1016/j. scitotenv.2020.140405

  27. Zhang D, Yang Y, Huang X, Jiang J, Li M, Zhang X, et al. SARS-CoV-2 spillover into hospital outdoor environments. MedRxiv [preprint]. 2020. https://doi.org/10.1101/2020.05.12.20097105

  28. Ahmed W, Angel N, Edson J, Bibby K, Bivins A, O´Brien JW, et al. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. Sci Total Environ. 2020;728(1):138764. https://doi. org/10.1016/j.scitotenv.2020.138764

  29. La Rosa G, Laconelli M, Mancini P, Bonanno FG, Veneri C, Bonadonna L, et al. First detection of SARS-CoV-2 in untreated wastewaters in Italy. Sci Total Environ. 2020;736(1):139652. https://doi.org/10.1016/j.scitotenv. 2020.139652

  30. Nemudryi A, Nemudraia A, Surya K, Wiegand T, Surya K, Buyukyoruk M, et al. Temporal detection and phylogenetic assessment of SARS-CoV-2 in municipal wastewater. Cell Rep Med. 2020;1(6):100098. https://doi. org/10.1016/j.xcrm.2020.100098

  31. Peccia J, Zulli A, Brackney DE, Grubaugh ND, Kaplan EH, Casanovas- Massana A, et al. Measurement of SARS-CoV-2 RNA in wastewater tracks community infection dynamics. Nat Biotechnol. 2020;38(10):1164-1167. https://doi.org/10.1038/s41587-020-0684-z

  32. Medema G, Heijnen L, Elsinga G, Italiaander R, Brouwer A. Presence of SARS-Coronavirus-2 RNA in sewage and correlation with reported COVID- 19 prevalence in the early stage of the epidemic in The Netherlands. Environ Sci Technol Lett. 2020;acs.estlett.0c00357. https://doi.org/10.1021/ acs.estlett.0c00357

  33. Wu F, Xiao A, Zhang J, Gu X, Lee WL, Kauffman K, et al. SARS-CoV-2 titers in wastewater are higher than expected from clinically confirmed cases. MedRxiv [preprint]. 2020. https://doi.org/10.1101/2020.04.05.20051540

  34. Green H, Wilder M, Middleton FA, Collins M, Fenty A, Gentile K, et al. Quantification of SARS-CoV-2 and cross-assembly phage (crAssphage) from wastewater to monitor coronavirus transmission within communities. MedRxiv [preprint]. 2020. https://doi.org/10.1101/2020.05.21.20109181

  35. Balboa S, Mauricio-Iglesias M, Rodríguez S, Martínez-Lamas L, Vasallo FJ, Regueiro B, et al. The fate of SARS-CoV-2 in wastewater treatment plants points out the sludge line as a suitable spot for incidence monitoring. MedRxiv [preprint]. 2020. https://doi.org/10.1101/2020.05.25.20112706

  36. Wurtzer S, Marechal V, Mouchel JM, Maday Y, Teyssou R, Richard E, et al. Evaluation of lockdown impact on SARS-CoV-2 dynamics through viral genome quantification in Paris wastewaters. MedRxiv [preprint]. 2020. https://doi.org/10.1101/2020.04.12.20062679

  37. Kocamemi BA, Kurt H, Sait A, Sarac F, Saatci AM, Pakdemirli B. SARSCoV- 2 Detection in Istanbul Wastewater Treatment Plant Sludges. MedRxiv [preprint]. 2020. doi: https://doi.org/10.1101/2020.05.12.20099358

  38. Kocamemi BA, Kurt H, Hacioglu S, Yarali C, Saatci AM, Pakdemirli B. First Data-Set on SARS-CoV-2 Detection for Istanbul Wastewaters in Turkey. MedRxiv [preprint]. 2020. https://doi.org/10.1101/2020.05.03.20089417

  39. Bar-Or I, Yaniv K, Shagan M, Ozer E, Erster O, Mendelson E, et al. Regressing SARS-CoV-2 sewage measurements onto COVID-19 burden in the population: a proof-of-concept for quantitative environmental surveillance. MedRxiv [preprint]. 2020. https://doi.org/10.1101/2020.04.2 6.20073569

  40. Sharif S, Ikram A, Khurshid A, Salman M, Mehmood N, Arshad Y, et al. Detection of SARS-Coronavirus-2 in wastewater, using the existing environmental surveillance network: An epidemiological gateway to an early warning for COVID-19 in communities. MedRxiv [preprint]. 2020. https:// doi.org/10.1101/2020.06.03.20121426

  41. Duan SM, Zhao XS, Wen RF, Huang JJ, Pi GH, Zhang SX, et al. Stability of SARS Coronavirus in Human Specimens and Environment and Its Sensitivity to Heating and UV Irradiation. Biomed Environ Sci. 2003;16(3):246-55.

  42. Wang XW, Li JS, Jin M, Zhen B, Kong QX, Song N, et al. Study on the resistance of severe acute respiratory syndrome-associated coronavirus. J Virol Methods. 2005;126(1-2):171-7. https://doi.org/10.1016/j.jviromet. 2005.02.005

  43. Wang XW, Li J, Guo T, Zhen B, Kong Q, Yi B, et al. Concentration and detection of SARS coronavirus in sewage from Xiao Tang Shan hospital and the 309th Hospital of the Chinese People’s Liberation Army. Water Sci Technol. 2005;52(8):213-21. https://doi.org/10.2166/wst.2005.0266

  44. Wang XW, Li JS, Guo TK, Zhen B, Kong QX, Yi B, et al. Concentration and detection of SARS coronavirus in sewage from Xiao Tang Shan Hospital and the 309th Hospital. J Virol Methods. 2005;128(1-2):156-61. https:// doi.org/10.1016/j.jviromet.2005.03.022

  45. Wang XW, Li JS, Guo TK, Zhen B, Kong QX, Yi B, et al. Excretion and detection of SARS coronavirus and its nucleic acid from digestive system. World J Gastroenterol. 2005;11(28):4390-5. https://doi.org/10.3748/wjg. v11.i28.4390

  46. Gundy PM, Gerba CP, Pepper IL. Survival of Coronaviruses in Water and Wastewater. Food Environ Virol. 2009;1(10):10-4. https://doi. org/10.1007/s12560-008-9001-6

  47. Casanova L, Rutala WA, Weber DJ, Sobsey MD. Survival of surrogate coronaviruses in water. Water Res. 2009;43(7):1893-8. https://doi. org/10.1016/j.watres.2009.02.002

  48. Mullis L, Saif LJ, Zhang Y, Zhang X, Azevedo MSP. Stability of bovine coronavirus on lettuce surfaces under household refrigeration conditions. Food Microbiol. 2012;30(1):180-6. https://doi.org/10.1016/j.fm.2011.12.009

  49. Ye Y, Ellenberg RM, Graham KE, Wigginton KR. Survivability, Partitioning, and Recovery of Enveloped Viruses in Untreated Municipal Wastewater. Environ Sci Tech. 2016;50(10):5077-85. https://doi.org/10.1021/acs. est.6b00876

  50. Lodder W, de Roda Husman AM. SARS-CoV-2 in wastewater: potential health risk, but also data source. Lancet Gastroenterol Hepatol. 2020;5(6):533-4. https://doi.org/10.1016/s2468-1253(20)30087-x




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

salud publica mex. 2021;63

ARTíCULOS SIMILARES

CARGANDO ...