medigraphic.com
ENGLISH

Medicina Interna de México

Colegio de Medicina Interna de México.
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2021, Número 1

<< Anterior Siguiente >>

Med Int Mex 2021; 37 (1)


Glicocálix en sepsis

Godínez-Vidal AR, Carrillo-Esper R, Cabello-Aguilera R
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 54
Paginas: 86-93
Archivo PDF: 359.32 Kb.


PALABRAS CLAVE

Glicocálix, infección, sepsis, inflamación.

RESUMEN

El glicocálix está estructuralmente conformado por glucoproteínas y glucosaminoglicanos. Constituye una capa que recubre el endotelio vascular y es la interfase entre el flujo sanguíneo, la célula endotelial y el intersticio. El glicocálix es fundamental para mantener la integridad de la función endotelial. En la sepsis ocurre lesión importante del mismo y los productos derivados de ésta son liberados en la sangre y pueden constituir biomarcadores clínicamente relevantes. Este trabajo revisa los conceptos actuales relacionados con la degradación del glicocálix y su efecto en la sepsis.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Starling EH. On the absorption of fluids from the connective tissue spaces. J Physiol 1896; 19: 312-26. doi. 10.1113/ jphysiol.1896.sp000596.

  2. Luft JH. Fine structures of capillary and endocapillary layer as revealed by ruthenium red. Fed Proc 1966; 25: 1773-1783.

  3. Vink H, Duling BR. Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ Res 1996; 79: 581-589. doi. 10.1161/01.res.79.3.581.

  4. Nieuwdorp M, Meuwese MC, Mooij HL, Ince C, et al. Measuring endothelial glycocalyx dimensions in humans: a potential novel tool to monitor vascular vulnerability. J Appl Physiol 2008; 104: 845-852. doi. 10.1152/japplphysiol. 00440.2007.

  5. Nieuwdorp M, van Haeften TW, Gouverneur MC, Mooij HL, et al. Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes 2006; 55: 480-486. https://doi.org/10.2337/diabetes.55.02.06.db05-1103.

  6. Weinbaum S, Tarbell JM, Damiano ER. The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng 2007; 9: 121-67. doi. 10.1146/annurev. bioeng.9.060906.151959.

  7. Ince C, Mayeux PR, Nguyen T, Gomez H, et al. The endothelium in sepsis. Shock 2016; 45: 259-70. doi. 10.1097/ SHK.0000000000000473.

  8. Alphonsus CS, Rodseth RN. The endothelial glycocalyx: a review of the vascular barrier. Anaesthesia 2014; 69: 777- 84. doi. 10.1111/anae.12661.

  9. Woodcock TE, Woodcock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth 2012; 108: 384-94. doi. 10.1093/ bja/aer515.

  10. Martin L, Koczera P, Zechendorf E, Schuerholz T. The endothelial glycocalyx: new diagnostic and therapeutic approaches in sepsis. Biomed Res Int 2016; 2016: 1-8. doi.10.1155/2016/3758278.

  11. Chelazzi C, Villa G, Mancinelli P, De Gaudio A, et al. Glycocalyx and sepsis-induced alterations in vascular permeability. Crit Care 2015; 19: 26. doi. 10.1186/s13054-015-0741-z.

  12. Henrich M, Gruss M, Weigand MA. Sepsis-induced degradation of endothelial glycocalix. Sci World J 2010; 10: 917-23. doi. 10.1100/tsw.2010.88.

  13. Chappell D, Jacob M. Role of the glycocalyx in fluid management: Small things matter. Best Pract Res Clin Anaesthesiol 2014; 28: 227-34. doi. 10.1016/j.bpa.2014.06.003.

  14. Levick JR, Michel CC. Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res 2010; 87: 198-210. doi. 10.1093/cvr/cvq062.

  15. Nam EJ, Park PW. Shedding of cell membrane-bound proteoglycans. Methods Mol Biol 2012; 836: 291-305. doi.10.1007/978-1-61779-498-8_19.

  16. Schott U, Solomon C, Fries D, Bentzer P. The endothelial glycocalyx and its disruption, protection and regeneration: a narrative review. Scand J Trauma Resusc Emerg Med 2016; 24: 48. doi. 10.1186/s13049-016-0239-y.

  17. Colbert JF, Schmidt EP. Endothelial and microcirculatory function and dysfunction in sepsis. Clin Chest Med 2016;37: 263-75. doi. 10.1016/j.ccm.2016.01.009.

  18. Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, et al. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 2007; 454: 345-59. doi. 10.1007/ s00424-007-0212-8.

  19. Lekakis J, Abraham P, Balbarini A, Blann A, et al. Methods for evaluating endothelial function: a position statement from the European Society of Cardiology Working Group on peripheral circulation. Eur J Cardiovasc Prev Rehabil 2011; 18: 775-89. doi. 10.1177/1741826711398179.

  20. Curry FE, Adamson RH. Endothelial glycocalyx: permeability barrier and mechanosensor. Ann Biomed Eng 2012; 40: 828-839. doi. 10.1007/s10439-011-0429-8.

  21. Pries AR, Kuebler WM. Normal endothelium. Handb Exp Pharmacol 2006; 1-40. doi. 10.1007/3-540-32967-6_1.

  22. Chappell D, Jacob M, Paul O, Rehm M, et al. The glycocalyx of the human umbilical vein endothelial cell: an impressive structure ex vivo but not in culture. Circ Res 2009; 104: 1313-1317. doi. 10.1161/CIRCRESAHA.108.187831.

  23. Potter DR, Damiano ER. The hydrodynamically relevant endothelial cell glycocalyx observed in vivo is absent in vitro. Circ Res 2008; 102: 770-776. doi. 10.1161/CIRCRESAHA. 107.160226.

  24. Mulivor AW, Lipowsky HH. Inhibition of glycan shedding and leukocyte-endothelial adhesion in postcapillary venules by suppression of matrixmetalloprotease activity with doxycycline. Microcirculation 2009; 16: 657-666. doi. 10.3109/10739680903133714.

  25. Alphonsus CS, Rodseth RN. The endothelial glycocalyx: a review of the vascular barrier. Anaesthesia. 2014; 69: 777-784. doi. 10.1111/anae.12661.

  26. Curry FE, Adamson RH. Endothelial glycocalyx: permeability barrier and mechanosensor. Ann Biomed Eng 2011; 40: 828-39. doi. 10.1007/s10439-011-0429-8.

  27. Becker BF, Jacob M, Leipert S, Salmon AHJ, et al. Degradation of the endothelial glycocalyx in clinical settings: searching for the sheddases. Br J Clin Pharmacol 2015; 80: 389-402. doi. 10.1111/bcp.12629.

  28. Wiesinger A, Peters W, Chappell D, Kentrup D, et al. Nanomechanics of the endothelial glycocalyx in experimental sepsis. PLoS One 2013; 8: e80905. https://doi.org/10.1371/ journal.pone.0080905.

  29. Schmidt EP, Yang Y, Janssen WJ, Gandjeva A, et al. The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nat Med 2012; 18: 1217-1223. doi. 10.1038/nm.2843.

  30. Lukasz A, Hillgruber C, Oberleithner H, Kusche-Vihrog K, et al. Endothelial glycocalyx breakdown is mediated by angiopoietin-2. Cardiovasc Res 2017; 113: 671-680. doi.10.1093/cvr/cvx023.

  31. Han S, Lee S-J, Kim KE, Lee HS, et al. Amelioration of sepsis by TIE2 activation-induced vascular protection. Sci Transl Med 2016; 8: 335ra55. doi. 10.1126/scitranslmed.aad9260.

  32. Proudfoot A, Johnson Z, Bonvin P, Handel T. Glycosaminoglycan interactions with chemokines add complexity to a complex system. Pharmaceuticals 2017; 10: 70. doi.10.3390/ph10030070.

  33. Axelsson J, Xu D, Na-Kang B, Nussbacher JK, et al. Inactivation of heparan sulfate 2-O-sulfotransferase accentuates neutrophil infiltration during acute inflammation in mice. Blood 2012; 120: 1742-51. doi. 10.1182/ blood-2012-03-417139.

  34. Parish CR. The role of heparan sulphate in inflammation. Nat Rev Immunol 2006; 6: 633-43.

  35. Wang L, Fuster M, Sriramarao P, Esko JD. Endothelial heparan sulfate deficiency impairs L-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses. Nat Immunol 2005; 6: 902-10. doi. 10.1038/ni1233.

  36. Henry CB, Duling BR. TNF-alpha increases entry of macromolecules into luminal endothelial cell glycocalyx. Am J Physiol Heart Circ Physiol 2000; 279: 2815-2823. doi.10.1152/ajpheart.2000.279.6.H2815.

  37. Chappell D, Hofmann-Kiefer K, Jacob M, Rehm M, et al. TNF-alpha induced shedding of the endothelial glycocalyx is prevented by hydrocortisone and antithrombin. Basic Res Cardiol 2009; 104: 78-89. doi. 10.1007/s00395-008-0749-5.

  38. Steppan J, Hofer S, Funke B, Brenner T, et al. Sepsis and major abdominal surgery lead to flaking of the endothelial glycocalix. J Surg Res 2011; 165: 136-141. doi. 10.1016/j. jss.2009.04.034.

  39. Nelson A, Berkestedt I, Schmidtchen A, Ljunggren L, et al. Increased levels of glycosaminoglycans during septic shock: relation to mortality and the antibacterial actions of plasma. Shock 2008; 30: 623-627. doi. 10.1097/ SHK.0b013e3181777da3.

  40. Puskarich MA, Cornelius DC, Tharp J, Nandi U, et al. Plasma syndecan-1 levels identify a cohort of patients with severe sepsis at high risk for intubation after large-volume intravenous fluid resuscitation. J Crit Care 2016; 36: 125-129. doi. 10.1016/j.jcrc.2016.06.027.

  41. Hofmann-Kiefer KF, Knabl J, Martinoff N, Schiessl B, et al. Increased serum concentrations of circulating glycocalyx components in HELLP syndrome compared to healthy pregnancy: an observational study. Reprod Sci 2013; 20:318-325. doi. 10.1177/1933719112453508.

  42. Chelazzi C, Villa G, Mancinelli P, De Gaudio A, et al. Glycocalyx and sepsis-induced alterations in vascular permeability. Crit Care 2015; 19: 26. doi. 10.1186/s13054-015-0741-z.

  43. Fleck A, Hawker F, Wallace PI, Raines G, et al. Increased vascular permeability: a major cause of hypoalbuminaemia in disease and injury. Lancet 1985; 325: 781-4. doi. 10.1016/ s0140-6736(85)91447-3.

  44. Manon-Jensen T, Multhaupt HAB, Couchman JR. Mapping of matrix metalloproteinase cleavage sites on syndecan-1 and syndecan-4 ectodomains. FEBS J 2013; 280: 2320-31. doi. 10.1111/febs.12174.

  45. Lipowsky HH, Lescanic A. The effect of doxycycline on shedding of the glycocalyx due to reactive oxygen species. Microvasc Res 2013; 90: 80-5. doi. 10.1016/j. mvr.2013.07.004.

  46. Levick JR, Michel CC. Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res 2010; 87:198-210. doi. 10.1093/cvr/cvq062.

  47. Levick JR. Revision of the Starling principle: new views of tissue fluid balance. J Physiol 2004; 557 (Pt 3): 704. doi. 10.1113/jphysiol.2004.066118.

  48. Jacob M, Bruegger D, Rehm M, Stoecketelhuber M, et al. The endothelial glycocalyx affords compatibility of Starling’s principle and high cardiac interstitial albumin levels. Cardiovasc Res 2007; 73: 575-86. doi. 10.1016/j. cardiores.2006.11.021.

  49. Yen WY, Cai B, Yang JL, Zhang L, et al. Endothelial surface glycocalyx can regulate flow-induced nitric oxide production in microvessels in vivo. PLoS One 2015; 10: e0117133. doi. 10.1371/journal.pone.0117133.

  50. Trani M, Dejana E. New insights in the control of vascular permeability: vascular endothelial-cadherin and other players. Curr Opin Hematol 2015; 22: 267-72. doi. 10.1097/ MOH.0000000000000137.

  51. Bruegger D, Schwartz L, Chappell D, Jacob M, et al. Release of atrial natriuretic peptide precedes shedding of the endothelial glycocalyx equally in patients undergoing on- and off- pump coronary artery bypass surgery. Basic Res Cardiol 2011; 106: 1111-21. doi. 10.1007/s00395-011-0203-y.

  52. Chappell D, Bruegger D, Potzel J, Jacob M, et al. Hypervolemia increases release of atrial natriuretic peptide and shedding of the endothelial glycocalyx. Crit Care 2014; 18:1. https://doi.org/10.1186/s13054-014-0538-5.

  53. Bruegger D. Atrial natriuretic peptide induces shedding of endothelial glycocalyx in coronary vascular bed of guinea pig hearts. Am J Physiol Heart Circ Physiol 2005; 289: H1993-9. doi. 10.1152/ajpheart.00218.2005.

  54. Hahn RG. Must hypervolaemia be avoided? A critique of the evidence. Anaesthesiol Intens Ther 2014; 47: 1-8. doi. 10.5603/AIT.a2015.0062.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Med Int Mex. 2021;37

ARTíCULOS SIMILARES

CARGANDO ...